Neuroscience
-
A new mammalian neuromuscular preparation is introduced for physiology and microscopy of all sorts: the intrinsic muscle of the mouse ear. The great utility of this preparation is demonstrated by illustrating how it has permitted us to develop a wholly new technique for staining muscle T-tubules, the critical conductive-elements in muscle. This involves sequential immersion in dilute solutions of osmium and ferrocyanide, then tannic acid, and then uranyl acetate, all of which totally blackens the T-tubules but leaves the muscle pale, thereby revealing that the T-tubules in mouse ear-muscles become severely distorted in several pathological conditions. ⋯ These new observations strongly encourage further in-depth studies of ear-muscle architecture, in the many available mouse-models of various devastating human muscle-diseases. Finally, we demonstrate that the delicate and defined physical characteristics of this 'new' mammalian muscle are ideal for ultrastructural study, and thereby facilitate the imaging of synaptic vesicle membrane recycling in mammalian neuromuscular junctions, a topic that is critical to myasthenia gravis and related diseases, but which has, until now, completely eluded electron microscopic analysis. This article is part of a Special Issue entitled: Honoring Ricardo Miledi - outstanding neuroscientist of XX-XXI centuries.
-
The cerebellum harbors a specialized area on the roof of the fourth ventricle that is composed of glial cells and neurons that interface with the cerebrospinal fluid. This region includes the so-called ventromedial cord (VMC), which is composed of cells that are glial fibrillary acidic protein (GFAP)-positive and nestin-positive and distributes along the midline in association with blood vessels. We hypothesized that these cells should compare to GFAP and nestin-positive cells that are known to exist in other areas of the brain, which undergo proliferation and differentiation under hypoxic conditions. ⋯ This EGFP loss was supported by western blot analysis, which also showed a loss in the astrocyte-markers GFAP and ALDH1L1. On the other hand, other cell-markers appeared to be upregulated in the blots (including nestin, NeuN, and Iba1). Finally, we found that HPC does not remarkably affect the incorporation of BrdU into cells on the cerebellum, but strongly augments BrdU incorporation into periventricular cells on the floor of the fourth ventricle over the adjacent medulla.
-
Accumulation of amyloid-β (Aβ) in brain tissue contributes to the pathophysiology of Alzheimer's disease (AD). We recently reported that intrahippocampal transplantation of mouse bone marrow-derived microglia-like (BMDML) cells suppresses brain amyloid pathology and cognitive impairment in a mouse model of AD. How these transplanted cells interact with resident microglia remains unknown. ⋯ Brain TGF-β1 levels and resident microglial TGF-β1R expression were increased by intrahippocampal injection of BMDML cells in a mouse model of AD. Cotreatment with the TGF-βR1 inhibitor suppressed the ability of transplanted BMDML cells to increase microglial TGF-β1R expression and decrease hippocampal Aβ levels. Taken together, these findings suggested that transplanted BMDML cells secreted TGF-β1 to stimulate Aβ phagocytosis by resident microglia and decrease brain Aβ pathology.
-
White matter lesions are common when global cerebral ischemia (GCI) occurs in the elderly, and cause damage to neurological and psychological functions. Remyelination often fails because of the limited recruitment of oligodendrocyte progenitor cells (OPCs) to the demyelinated site or the inefficient differentiation of OPCs to mature oligodendrocytes (OLs). The activation of microglia, the most important immune cells in the central nervous system, and subsequent inflammation have been implicated in myelination repair disorder. ⋯ No effect was found on myelin in the corpus callosum. Besides, hippocampal neurons were protected by anti-FKR treatment after GCI. Collectively, our data demonstrated that downregulating of the Fractalkine/CX3CR1 signaling pathway had an anti-depressant and cognition-improvement effect by inhibiting microglia activation, promoting OPCs maturation and remyelination.
-
Post-translational modification of Tau, a microtubule-associated protein in the neuronal cell, plays a major role in Alzheimer's disease. Tau is an axonal protein expressed in mature neurons that promote the self-assembly of tubulin into microtubules and its stabilization in neurons. Phosphorylation of Tau makes it prone to aggregation at the intra-neuronal region leading to impaired neurotransmission and dementia. ⋯ Here we highlight the role of GPCRs in Tau phosphorylation and Tau interaction in different cells of the nervous system. Hence, the role of GPCRs are attaining more attention in the therapeutic field of Alzheimer's disease. Specific agonists/antagonists and allosteric modulators could be the potential target for therapy against GPCR-mediated Tau phosphorylation in Alzheimer's disease.