Neuroscience
-
Fear of falling can have a profound influence on anticipatory postural control during dynamic balance tasks (e.g., rise-to-toes and leg-raise tasks), with fearful individuals typically exhibiting postural adjustments of smaller magnitudes prior to movement onset. However, very little is known about how fear of falling influences the generation of anticipatory postural adjustments (APAs) during gait initiation; a task in which producing smaller APAs may compromise stability. Sixteen young adults initiated gait as fast as possible following an auditory cue during two conditions: Baseline (ground level), and Threat (fear of falling induced via a platform raised 1.1 m). ⋯ We suggest that such failure to scale the APA to the magnitude of the motor output represents a fear-related 'overcompensation', whereby fearful participants sought to ensure that the APA was sufficient for ensuring that their centre of mass was positioned above the support leg prior to gait initiation. During conditions of threat, participants also exhibited greater postural sway prior to initiating gait (i.e., following the auditory cue) and took longer to generate the APA (i.e., impaired reaction). As greater reaction times during voluntary stepping is consistently associated with increased fall-risk, we suggest this as one mechanism through which fear of falling may reduce balance safety.
-
Human visual function degrades with age. Previous studies of visual perception have shown that aged people have worse performance in the coding of orientation information. However, the neuronal mechanism still remains elusive. ⋯ Further investigation of neuronal correlation showed higher noise and signal correlations in aging monkeys than that in young monkeys. These correlation changes predicted a detrimental effect on the efficiency of population coding of orientation information. Taken together, our results suggest that the information coding efficiency of orientation information is impaired during aging and might account for the degradation of performance in human fine orientation discrimination task.
-
Stress plays a crucial role in the pathogenesis of psychiatric disorders and affects neuronal plasticity in different brain regions. We have previously found that acute foot-shock (FS) stress elicits fast and long-lasting functional and morphological remodeling of excitatory neurons in the prefrontal cortex (PFC), which were partly prevented by the pretreatment with antidepressants. Here we investigated, whether acute stress and pretreatment with desipramine (DMI) interfere in hippocampal dendritic remodeling. ⋯ However, DMI treatment without stress differentially affected the expression patterns of spine-related genes and proteins. In conclusion, acute FS-stress and pretreatment with DMI significantly changed dendritic morphology, including number and morphology of spines, and the length of dendrites in hippocampal CA1 pyramidal cells as early as 1 day, and sustained up to 14 days after acute FS. The findings were paralleled by changes in gene and protein expression of actin binding and cytoskeletal proteins, Rho GTPases, and postsynaptic scaffolding proteins.
-
Randomized Controlled Trial
Early exercise after intracerebral hemorrhage inhibits inflammation and promotes neuroprotection in the sensorimotor cortex in rats.
The present study examined the effect of early exercise on brain damage and recovery of motor function following intracerebral hemorrhage (ICH) in rats. Subjects were randomly assigned to no training after ICH (ICH), no training after sham surgery (SHAM), early treadmill exercise after ICH (ICH + ET), and late treadmill exercise after ICH (ICH + LT) groups. The ICH + ET and ICH + LT groups were trained for seven consecutive days starting on day 2 and day 9 after surgery, respectively. ⋯ Expression of IL-1b mRNA was significantly lower in the ICH + ET group than that in the ICH group. Collectively, these results suggest that early treadmill exercise after ICH promotes recovery of sensorimotor function by preventing neuronal death and ensuing cortical atrophy and by preserving dendritic structure compared with late treadmill exercise and no exercise. Early exercise may prevent neurodegeneration and functional loss by inhibiting neuroinflammation.
-
The complexity of brain activity has recently been investigated using the Hurst exponent (H), which describes the extent to which functional magnetic resonance imaging (fMRI) blood oxygen-level dependent (BOLD) activity is simple vs. complex. For example, research has demonstrated that fMRI activity is more complex before than after consumption of alcohol and during task than resting state. The measurement of H in fMRI is a novel method that requires the investigation of additional factors contributing to complexity. ⋯ Multiple regression analyses demonstrated that eigenvector centrality was the most robust predictor of complexity, whereby greater centrality was associated with increased complexity (lower H). Regions known to be highly connected, including the thalamus and hippocampus, notably were among the highest in centrality and complexity. This research has led to a greater understanding of how brain region characteristics such as DTI centrality relate to the novel Hurst exponent approach for assessing brain activity complexity, and implications for future research that employ these measures are discussed.