Neuroscience
-
Case Reports
Damage to the Intraparietal Sulcus Impairs Magnitude Representations of Results of Complex Arithmetic Problems.
Past research investigating the role of the intraparietal sulcus (IPS) in numerical processes focused mainly on quantity and numerical comparisons as well on single digit arithmetic. The present study investigates the involvement of the IPS in estimating the results of multi-digit multiplication problems. For this purpose, the performance a 24-year-old female (JD) with brain damage in the left IPS was compared to an age-matched control group in the computation estimation task. ⋯ Most control participants used both the approximated calculation strategy that involves rounding and calculation procedures and the sense of magnitude strategy that relies on an intuitive approximated magnitude representation of the results. In contrast, JD used only the former but not the latter strategy. Together, these findings suggest that the damage to the IPS impaired JD's representations of magnitude that play an important role in this computation estimation task.
-
Autism Spectrum Disorders (ASD) are caused by disrupted neurodevelopment leading to socio-communication and behavioural abnormalities. Although genetic anomalies like Copy Number Variations (CNV) have been implicated in ASD, their overall genomic landscape and pathogenicity remain elusive. Therefore, we created a CNV map for ASD using 9337 cases and 5650 controls from SFARI database, statistically marked genomic regions with high and low frequencies of CNVs (i.e., common and rare CNV regions respectively), performed gene function enrichment for CNV genes, built functional networks, pathways and examined their expression in brain tissues. ⋯ While common CNV regions were found in loci 15q11.2, 16p11.2, 22q11.21, 15q13.2-13.3, rare CNV regions in loci 4p16.3, 9q34.3, 7q11.23, 17p11.2 contributed significantly to protein interaction networks and were highly expressed in brain. Enriched CNV genes were clustered in six functional categories with either direct roles in neurodevelopment or auxiliary roles like cellular signalling via MAPK pathway, cytoskeletal organization and transport or immune regulation. Mechanisms through which these molecular systems could independently or in combination trigger an ASD phenotype were predicted.
-
Editorial Comment
The role of TGF-β1 in promoting microglial Aβ phagocytosis.
-
Mutations in γ-aminobutyric acid A receptor (GABAA) subunits and sodium channel genes, especially GABRG2 and SCN1A, have been reported to be associated with febrile seizures (FS) and genetic epilepsy with febrile seizures plus (GEFS+). GEFS+ is a well-known family of epileptic syndrome with autosomal dominant inheritance in children. Its most common phenotypes are febrile seizures often with accessory afebrile generalized tonic-clonic seizures, febrile seizures plus (FS+), severe epileptic encephalopathy, as well as other types of generalized or localization-related seizures. ⋯ In summary, mutations in the GABAA receptor can lead to a decrease in numbers of receptors, which may cause the impairment of GABAergic pathway signaling. This data has been the first time to reveal that GABRG2 mutations would affect the function of other genes, and based on this finding we hope this work would also provide a new direction for the research of GABRG2 in GEFS+. It also may provide a molecular basis for the severity of epilepsy, and guide the clinical medication for the treatment of the epilepsy focused on the function on GABAA receptors, which, might be a new strategy for genetic diagnosis and targeted treatment of epilepsy.
-
Stress plays a crucial role in the pathogenesis of psychiatric disorders and affects neuronal plasticity in different brain regions. We have previously found that acute foot-shock (FS) stress elicits fast and long-lasting functional and morphological remodeling of excitatory neurons in the prefrontal cortex (PFC), which were partly prevented by the pretreatment with antidepressants. Here we investigated, whether acute stress and pretreatment with desipramine (DMI) interfere in hippocampal dendritic remodeling. ⋯ However, DMI treatment without stress differentially affected the expression patterns of spine-related genes and proteins. In conclusion, acute FS-stress and pretreatment with DMI significantly changed dendritic morphology, including number and morphology of spines, and the length of dendrites in hippocampal CA1 pyramidal cells as early as 1 day, and sustained up to 14 days after acute FS. The findings were paralleled by changes in gene and protein expression of actin binding and cytoskeletal proteins, Rho GTPases, and postsynaptic scaffolding proteins.