Neuroscience
-
Gallic acid (GA) is a polyphenolic compound that has attracted significant interest due to its antioxidant action through free radical elimination and metal chelation. Ethanol is a highly soluble psychoactive substance, and its toxicity is associated with oxidative stress. In this context, the purpose of the present study was to investigate the effect of GA on neurochemical changes in zebrafish brains exposed to ethanol. ⋯ Treatment with GA at 5 and 10 mg/L reversed impairment of choline acetyltransferase activity and the damage to TBA-RS levels, DCFH oxidation, and superoxide dismutase activity induced by ethanol. Results of the present study suggest that GA treatment (20 mg/L) appeared to disrupt oxidative parameters in the zebrafish brain. GA treatment at 5 and 10 mg/L reversed alterations to the cholinergic system induced by prolonged exposure to ethanol in the zebrafish brain, probably through an antioxidant mechanism.
-
Alzheimer's disease (AD) is the most common neurodegenerative disease and is characterized by progressive memory loss and cognitive dysfunction. Long non-coding RNAs (lncRNAs) have been shown to be among the most promising biomarkers and therapeutic targets of AD. Here, we aimed to investigate whether lncRNA BACE1-AS plays a role in the potential mechanisms of AD. ⋯ The miR-214-3p inhibitor reversed the protective effects of sh BACE1-AS and sh ATG5 against Aβ1-42-induced cell injury. Knockdown of BACE1-AS alleviated neuronal injury by repressing autophagy in vivo. Our findings demonstrate that silencing of BACE1-AS alleviated neuronal injury by regulating autophagy through the miR-214-3p/ATG5 signalling axis in AD.
-
Chronic intermittent ethanol (CIE) exposure dysregulates glutamatergic and GABAergic neurotransmission, facilitating basolateral amygdala (BLA) pyramidal neuron hyperexcitability and the expression of anxiety during withdrawal. It is unknown whether ethanol-induced alterations in nucleus basalis magnocellularis (NBM) cholinergic projections to the BLA mediate anxiety-related behaviors through direct modulation of GABA and glutamate afferents. Following 10 days of CIE exposure and 24 h of withdrawal, we recorded GABAergic and glutamatergic synaptic responses in BLA pyramidal neurons with electrophysiology, assessed total protein expression of cholinergic markers, and quantified acetylcholine and choline concentrations using a colorimetric assay. ⋯ CIE caused a three-fold increase in BLA acetylcholine concentration, with no changes in α7 nAChR or cholinergic marker expression. These data illustrate that α7 nAChR-dependent changes in presynaptic function serve as a proxy for CIE-dependent alterations in synaptic acetylcholine levels. Thus, cholinergic projections appear to mediate CIE-induced alterations at GABA/glutamate inputs.
-
Randomized Controlled Trial
Improving cross-cultural "mind-reading" with electrical brain stimulation.
A cross-cultural disadvantage exists when inferring the mental state of others, which may be detrimental for individuals acting in an increasingly globalized world. The dorsomedial prefrontal cortex (dmPFC) is a key hub of the social brain involved in ToM. We explored whether facilitation of dmPFC function by focal high-definition tDCS can improve cross-cultural mind-reading. 52 (26 F/M) Singaporeans performed the Caucasian version of the Reading the Mind in the Eyes Test (RMET) and received HD-tDCS to either the dmPFC or a control site (right temporoparietal junction, rTPJ) in sham-controlled, double-blinded, crossover studies. ⋯ Importantly, HD-tDCS to the dmPFC improved RMET performance in those with less contact. No effect was identified for rTPJ HD-tDCS or for the age/sex control task demonstrating task and site specificity of the stimulation effects. Electrical stimulation of the dmPFC selectively improves the rate of cross-cultural ToM inference from facial cues, effectively removing cross-cultural disadvantage that was found in individuals with lower cross-cultural exposure.
-
Postural and movement components must be coordinated without significant disturbance to balance when reaching from a standing position. Traditional theories propose that muscle activity prior to movement onset create the mechanics to counteract the internal torques generated by the future limb movement, reducing possible instability via centre of mass (CoM) displacement. However, during goal-directed reach movements executed on a fixed base of support (BoS), preparatory postural adjustments (or pPAs) promote movement of the CoM within the BoS. ⋯ Participants executed beyond-arm reaching movements in four different postural configurations that altered the quality of the BoS. Quantification of these changes to stability did not drastically alter the tuning or timing of preparatory muscle activity despite modifications to arm and CoM trajectories necessary to complete the reaching movement. In contrast to traditional views, preparatory postural muscle activity is not always tuned for balance maintenance or even as a calculation of upcoming instability but may reflect a requirement of voluntary movement towards a pre-defined location.