Neuroscience
-
Sensory substitution refers to the concept of feeding information to the brain via an atypical sensory pathway. We here examined the degree to which participants (deaf and hard of hearing) can learn to identify sounds that are algorithmically translated into spatiotemporal patterns of vibration on the skin of the wrist. In a three-alternative forced choice task, participants could determine the identity of up to 95% and on average 70% of the stimuli simply by the spatial pattern of vibrations on the skin. ⋯ Participants answered whether the word was the same or different. With minimal difference pairs (distinguished by only one phoneme, such as "house" and "mouse"), the best performance was 83% (average of 62%), while with non-minimal pairs (such as "house" and "zip") the best performance was 100% (average of 70%). Collectively, these results demonstrate that participants are capable of using the channel of the skin to interpret auditory stimuli, opening the way for low-cost, wearable sensory substitution for the deaf and hard of hearing communities.
-
The functional organization of the hippocampus along its longitudinal (septotemporal or dorsoventral) axis is conspicuously heterogeneous. This functional diversification includes the activity of sharp wave and ripples (SPW-Rs), a complex intrinsic network pattern involved in memory consolidation. In this study, using transverse slices from the ventral and the dorsal rat hippocampus and recordings of CA1 field potentials we studied the development of SPW-Rs and possible changes in local network excitability and inhibition, during in vitro maintenance of the hippocampal tissue. ⋯ Furthermore, the amplitude of SPWs positively correlated with the level of maximum excitation of the local neuronal network in both segments of the hippocampus, and the local network excitability and inhibition in the ventral but not the dorsal hippocampus. Blockade of α5 subunit-containing GABAA receptor by L-655,708 significantly reduced the rate of occurrence of SPWs and enhanced the probability of their generation in the form of clusters in the ventral hippocampus without affecting activity in the dorsal hippocampus. The present evidence suggests that a dynamic upregulation of excitation and inhibition in the local neuronal network may significantly contribute to the generation of SPW-Rs, particularly in the ventral hippocampus.
-
Cerebellar Purkinje cells develop the most elaborate dendritic trees among neurons in the brain. To examine the role of Ca2+/calmodulin-dependent protein kinase (CaMK) IIα, IIβ and IV in the dendritic differentiation of Purkinje cells, we introduced siRNA against these CaMKs into Purkinje cells in cerebellar cell cultures using a single-cell electroporation technique. Single-cell electroporation enables us to transfer siRNA into specific cells within a heterogeneous cell population. ⋯ However, the combination of all three siRNA against these CaMKs (triple knockdown) inhibited the branching of Purkinje cell dendrites. Furthermore, the triple knockdown reduced the phosphorylation of CREB in Purkinje cells. These findings suggest the promotion of dendritic differentiation of Purkinje cells by CaMKIIα, IIβ and IV and the possible involvement of phosphorylation of CREB as a common substrate of these CaMKs.
-
Auto-regulation mechanisms in serotonergic neurons regulate their electrical activity and secretion. Since these neurons release serotonin from different structural compartments - including presynaptic terminals, soma, axons and dendrites - through different mechanisms, autoregulation mechanisms are also likely to be different at each compartment. Here we show that a chloride-mediated auto-inhibitory mechanism is exclusively localized at presynaptic terminals, but not at extrasynaptic release sites, in serotonergic Retzius neurons of the leech. ⋯ This shows that the auto-inhibition effects are unique to nerve terminals. We further determined that serotonin released from peri-synaptic dense-core vesicles contributes to auto-inhibition in the terminals, since blockade of L-type calcium channels, which are required to stimulate extrasynaptic but not synaptic release, decreased the amplitude of the auto-inhibition response. Our results show that the auto-regulation mechanism at presynaptic terminals is unique and different from that described in the soma of these neurons, further highlighting the differences in the mechanisms regulating serotonin release from different neuronal compartments, which expand the possibilities of a single neuron to perform multiple functions in the nervous system.
-
In everyday life, risky decision-making relies on multiple cognitive processes including sensitivity to reinforcers, exploration, learning, and forgetting. Neuroimaging evidence suggests that the dorsolateral prefrontal cortex (DLPFC) is involved in exploration and risky decision-making, but the nature of its computations and its causal role remain uncertain. We provide evidence for the role of the DLPFC in value-independent, directed exploration on the Iowa Gambling Task (IGT) and we describe a new computational model to account for the competition of directed exploration and exploitation in guiding decisions. ⋯ Applying cTBS to the left and right DLPFC selectively decreased directed exploration on the IGT compared to sham stimulation. Model-based analyses further indicated that the right (but not the left) DLPFC stimulation increased sensitivity to reinforcers, leading to avoidance of risky choices and promoting advantageous choices during the task. Although these findings are based on small sample sizes per group, they nevertheless elucidate the causal role of the right DLPFC in governing the exploration-exploitation tradeoff during decision-making in uncertain and ambiguous contexts.