Neuroscience
-
Autism spectrum disorder (ASD) is a heritable neurodevelopmental disorder that can vary considerably in severity. Autistic traits are distributed continuously across populations, even in sub-clinical individuals. Serotonin transporter-gene polymorphic region (5-HTTLPR) has been studied as a candidate genetic factor related to ASD, however results have been inconsistent. 5-HTTLPR is implicated in the function of medial prefrontal cortex (mPFC), a region associated with the social abnormalities found in ASD. ⋯ We also observed a significant negative correlation between autistic traits related to social skills and right mPFC activation. Structural equation analysis suggested a significant indirect effect of 5-HTTLPR on Autism-Spectrum Quotients, with right mPFC activation acting as a mediator. These results suggest that the diverse autistic traits related to social skills seen in the general population are associated with the 5-HTTLPR genotype, and that this association is mediated by right mPFC function.
-
Auto-regulation mechanisms in serotonergic neurons regulate their electrical activity and secretion. Since these neurons release serotonin from different structural compartments - including presynaptic terminals, soma, axons and dendrites - through different mechanisms, autoregulation mechanisms are also likely to be different at each compartment. Here we show that a chloride-mediated auto-inhibitory mechanism is exclusively localized at presynaptic terminals, but not at extrasynaptic release sites, in serotonergic Retzius neurons of the leech. ⋯ This shows that the auto-inhibition effects are unique to nerve terminals. We further determined that serotonin released from peri-synaptic dense-core vesicles contributes to auto-inhibition in the terminals, since blockade of L-type calcium channels, which are required to stimulate extrasynaptic but not synaptic release, decreased the amplitude of the auto-inhibition response. Our results show that the auto-regulation mechanism at presynaptic terminals is unique and different from that described in the soma of these neurons, further highlighting the differences in the mechanisms regulating serotonin release from different neuronal compartments, which expand the possibilities of a single neuron to perform multiple functions in the nervous system.
-
Reactive aldehydes are generated as a toxic end-product of lipid peroxidation under inflammatory oxidative stress condition which is a well-established phenomenon in the pathogenesis of multiple sclerosis (MS) and its animal model, experimental autoimmune encephalomyelitis (EAE). Alda-1, a selective agonist of mitochondrial aldehyde dehydrogenase 2 (ALDH2), is known to detoxify the reactive aldehydes. In this study, we investigated the effect of Alda-1 on CNS myelin pathology associated with reactive aldehydes and mitochondrial/peroxisomal dysfunctions in a mouse model of EAE. ⋯ EAE mice had increased levels of reactive aldehyde species, such as 4-hydroxynonenal (4-HNE), malondialdehyde (MDA), and acrolein (ACL) in the spinal cords and these levels were significantly reduced in Alda-1-treated EAE mice. Furthermore, Alda-1 treatment improved the loss of mitochondrial (OXPHOS) and peroxisomal (PMP70 and catalase) proteins as well as mitochondrial/peroxisomal proliferation factors (PGC-1α and PPARs) in the spinal cords of EAE mice. Taken together, this study demonstrates the therapeutic efficacy of ALDH2-agonist Alda-1 in the abatement of EAE disease through the detoxification of reactive aldehydes, thus suggesting Alda-1 as a potential therapeutic intervention for MS.
-
Crucial to an animal's movement through their environment and to the maintenance of their homeostatic physiology is the integration of sensory information. This is achieved by axons communicating from organs, muscle spindles and skin that connect to the sensory ganglia composing the peripheral nervous system (PNS), enabling organisms to collect an ever-constant flow of sensations and relay it to the spinal cord. ⋯ This review covers the origins and development of the DRG and the cells that populate it, and focuses on how sensory connectivity to the spinal cord is achieved by the diverse developmental and molecular processes that control axon guidance in the trunk sensory system. We also describe convergences and differences in sensory neuron formation among different vertebrate species to gain insight into underlying developmental mechanisms.
-
Cortical neurons display diverse firing patterns and synchronization properties. How anesthesia alters the firing response of different neuron groups relevant for sensory information processing is unclear. Here we investigated the graded effect of anesthesia on spontaneous and visual flash-induced spike activity of different neuron groups classified based on their spike waveform, firing rate, and population coupling (the extent neurons conform to population spikes). ⋯ The late response (200-400 ms post-stimulus) of all neurons was also suppressed. We conclude that anesthesia alters the visual response of primarily high-firing highly coupled neurons, which may interfere with visual sensory processing. The increased association of population coupling and firing rate during anesthesia suggests a decrease in sensory information content.