Neuroscience
-
The N170 is a large deflection of the human electroencephalogram (EEG), peaking at about 170 milliseconds over the occipito-temporal cortex after the sudden onset of a face stimulus. The N170 reflects perceptual awareness of a face and its onset corresponds to the emergence of reliable face-selectivity in the human brain. However, whether sensitivity to the long-term familiarity of a face identity emerges already at this early time-point remains debated. ⋯ This effect is especially present for personally familiar faces, learned in natural conditions. In the human brain, effects linked to familiarity with specific facial identities therefore appear to emerge between 150 and 200 ms in occipito-temporal brain regions, i.e., shortly after the onset of face-selectivity but at the same time as the earliest high-level effects of immediate unfamiliar face identity repetition. This observation challenges standard neurocognitive models with a clear-cut distinction between perceptual and memory stages in human face recognition.
-
Crucial to an animal's movement through their environment and to the maintenance of their homeostatic physiology is the integration of sensory information. This is achieved by axons communicating from organs, muscle spindles and skin that connect to the sensory ganglia composing the peripheral nervous system (PNS), enabling organisms to collect an ever-constant flow of sensations and relay it to the spinal cord. ⋯ This review covers the origins and development of the DRG and the cells that populate it, and focuses on how sensory connectivity to the spinal cord is achieved by the diverse developmental and molecular processes that control axon guidance in the trunk sensory system. We also describe convergences and differences in sensory neuron formation among different vertebrate species to gain insight into underlying developmental mechanisms.
-
Alzheimer's disease (AD) is a progressive neurodegenerative disease most often characterized by memory impairment and cognitive decline. Alpha-asarone has been reported to have the potential to treat AD. Our previous studies have found that alpha-asarone improves aged rats' cognitive function by alleviating neuronal excitotoxicity via type A gamma-aminobutyric acid (GABA) receptors. ⋯ Also, it decreased the GFAP expression and reduced pro-inflammatory cytokines levels, thus alleviating neuroinflammation. Furthermore, alpha-asarone decreased the excess number of autophagosomes and promoted hippocampal neurons' survival. In conclusion, the results confirmed the therapeutic effect of alpha-asarone on AD-related astrogliosis, dysfunctional autophagy, and neuronal damage, which indicates its great potential to treat AD.
-
The negative effects of fetal alcohol exposure on child development are well documented. This study investigated the electrophysiological processing of cortical level acoustic signals in a group of 21 children prenatally exposed to alcohol. Participants aged 13-14 years at the time of the study were recruited from a longitudinal cohort sample. ⋯ However, the Apgar score did not influence these results. In conclusion, children who had fetal exposure to alcohol presented electrophysiological recordings distinct from the control group. These differences occurred both in the P2 component - which reflects a bottom-up mechanism of auditory processing - as well as the P3a component, which may reflect the participation of supra-modal hearing mechanisms.
-
Sensory substitution refers to the concept of feeding information to the brain via an atypical sensory pathway. We here examined the degree to which participants (deaf and hard of hearing) can learn to identify sounds that are algorithmically translated into spatiotemporal patterns of vibration on the skin of the wrist. In a three-alternative forced choice task, participants could determine the identity of up to 95% and on average 70% of the stimuli simply by the spatial pattern of vibrations on the skin. ⋯ Participants answered whether the word was the same or different. With minimal difference pairs (distinguished by only one phoneme, such as "house" and "mouse"), the best performance was 83% (average of 62%), while with non-minimal pairs (such as "house" and "zip") the best performance was 100% (average of 70%). Collectively, these results demonstrate that participants are capable of using the channel of the skin to interpret auditory stimuli, opening the way for low-cost, wearable sensory substitution for the deaf and hard of hearing communities.