Neuroscience
-
The negative effects of fetal alcohol exposure on child development are well documented. This study investigated the electrophysiological processing of cortical level acoustic signals in a group of 21 children prenatally exposed to alcohol. Participants aged 13-14 years at the time of the study were recruited from a longitudinal cohort sample. ⋯ However, the Apgar score did not influence these results. In conclusion, children who had fetal exposure to alcohol presented electrophysiological recordings distinct from the control group. These differences occurred both in the P2 component - which reflects a bottom-up mechanism of auditory processing - as well as the P3a component, which may reflect the participation of supra-modal hearing mechanisms.
-
Brain-derived neurotrophic factor (BDNF) plays an important role in processes associated with neuroplasticity and neuroprotection. Evidence suggests that decreased BDNF levels in the central nervous system (CNS) represent a mechanism underlying the development of mood disorders. We hypothesize that both congenital and traumatic brain injury (mTBI)-induced blood-brain barrier (BBB) breakdown are responsible for brain BDNF depletion that contributes to the development of depressive-like symptoms. ⋯ No alterations in BDNF levels were observed in mTBI and CMS-exposed HA mice. Moreover, CMS did not induce BBB damage or affect depressive-like behaviours in HA mice despite downregulating Bdnf gene expression. To conclude, BDNF efflux through the mTBI-disrupted BBB is strongly linked to the development of depressive-like behaviours, while the depressive phenotype in mice with congenital BBB dysfunction is independent of BDNF leakage.
-
Exposure to stress activates glucocorticoid receptors in the brain and facilitates the onset of multitude psychiatric disorders. It has been shown that FK506 binding protein 51 (FKBP5) expression increases during glucocorticoid receptor (GR) activation in various brain regions including the medial prefrontal cortex (mPFC). FKBP5 knockout (KO) mice are reported to be resilient to stress, however, it remains uninvestigated whether FKBP5 loss affects neurotransmission and if so, what the functional consequences are. ⋯ We found that GR activation significantly decreased excitatory neurotransmission in the mPFC, which was completely abolished upon FKBP5 deletion, in consistent with behavioral resilience observed in FKBP5 KO mice. Even though FKBP5 loss has minimal impact on neural excitability, we found that FKBP5 deletion distorts the excitatory/inhibitory balance in the mPFC. Our study suggests that FKBP5 deficiency leads to the mPFC insensitive to GR activation and provides a neurophysiological explanation for how FKBP5 deficiency may mediate stress resilience.
-
We used a finger force matching task to explore the role of efferent signals in force perception. Healthy, young participants performed accurate force production tasks at different force levels with the index and middle fingers of one hand (task-hand). They received visual feedback during an early part of each trial only. ⋯ In particular, using distorted copies of the RC for the antagonist muscle group could account for the differences between the task-hand and match-hand. We conclude that efferent signals may be distorted before their participation in the perceptual process. Such distortions emerge spontaneously and may be amplified by the response of sensory endings to muscle vibration combined over both agonist and antagonist muscle groups.
-
Acute neuroinflammation is the major detrimental factor that causes secondary tissue damage after spinal cord injury (SCI). Curbing neuroinflammation would reduce the neuronal death and benefit functional recovery. In the current study, we used a HO-1-encoding lentivirus to transduce microglia, and adoptively transferred these microglia into injured rat spinal cords. ⋯ Moreover, the AMPK inhibitor compound C diminished the anti-inflammatory effect of HO-1 in lipopolysaccharide-stimulated microglia in vitro. Taken together, we proved that microglial HO-1 reduced acute post-SCI neuroinflammation. Our study might provide a promising therapeutic approach to benefit SCI recovery.