Neuroscience
-
Exercise is a promising, cost-effective intervention to augment successful aging and neurorehabilitation. Decline of gray and white matter accompanies physiological aging and contributes to motor deficits in older adults. ⋯ This knowledge will allow us to develop more effective, personalized exercise protocols that meet individual needs, thereby increasing the utility of exercise strategies in clinical and non-clinical settings. Here, we review findings from studies that investigated neurophysiological and molecular changes associated with acute or long-term exercise in healthy, young adults and in healthy, postmenopausal women.
-
Gold nanoparticles (GNP) have emerged as an alternative to biomaterials in biomedical applications. Research has clearly demonstrated the relative safety and low toxicity of these molecules. However, the possible neuroprotective effect of GNP on the central nervous system (CNS) and its relationship with neurological and psychiatric disorders remain unclear. ⋯ GNP also prevented EtOH-induced increase in superoxide dismutase and catalase activities, suggesting a modulatory role of GNP in enzymatic antioxidant defenses. Our results showed that GNP was able to modulate the disruption of cholinergic and oxidative homeostasis in the brain of zebrafish. These findings indicate for the first time that zebrafish is an interesting perspective to investigate nanoparticles against disorders related to alcohol abuse.
-
Circadian disruptions, along with altered affective and reward states, are commonly associated with psychiatric disorders. In addition to genetics, the enduring influence of environmental factors in programming neural networks is of increased interest in assessing the underpinnings of mental health. The duration of daylight or photoperiod is known to impact both the serotonin and dopamine systems, which are implicated in mood and reward-based disorders. ⋯ We next highlight how brain regions crucial for the serotoninergic system (i.e., dorsal raphe nucleus; DRN), and dopaminergic (i.e., nucleus accumbens; NAc and ventral tegmental area; VTA) system are intertwined in overlapping circuitry, and play influential roles in the pathology of mood and reward-based disorders. We then focus on human and animal studies that demonstrate the impact of circadian factors on the dopaminergic system. Lastly, we discuss how environmental factors such as circadian photoperiod can impact the neural circuits that are responsible for regulating affective and reward states, offering novel insights into the biological mechanisms underlying the pathophysiology, systems, and therapeutic treatments necessary for mood and reward-based disorders.
-
Diffusion-weighted magnetic resonance imaging (DWI) is undergoing constant evolution with the ambitious goal of developing in-vivo histology of the brain. A recent methodological advancement is Neurite Orientation Dispersion and Density Imaging (NODDI), a histologically validated multi-compartment model to yield microstructural features of brain tissue such as geometric complexity and neurite packing density, which are especially useful in imaging the white matter. Since NODDI is increasingly popular in clinical research and fields such as developmental neuroscience and neuroplasticity, it is of vast importance to characterize its reproducibility (or reliability). ⋯ Collectively, the voxel-based approach with Gaussian smoothing kernels of ≥4 mm FWHM and ROI-averaging yielded the highest reproducibility across NDI and ODI maps (CVWS mostly ≤3%, ICC mostly ≥0.8), respectively, whilst smaller kernels and TBSS performed consistently worse. Furthermore, we demonstrate that image quality (signal-to-noise ratio [SNR]) is an important determinant of NODDI metric reproducibility. We discuss the implications of these results for longitudinal and cross-sectional research designs commonly employed in the neuroimaging field.
-
The neuroscience of music has recently attracted significant attention, but the effect of music style on the activation of auditory-motor regions has not been explored. The aim of the present study is to analyze the differences in brain activity during passive listening to non-vocal excerpts of four different music genres (classical, reggaeton, electronic and folk). A functional magnetic resonance imaging (fMRI) experiment was performed. ⋯ The findings revealed that listening to different music styles in musically inexperienced subjects elicits different brain activity in auditory and motor related areas. Reggaeton was, among the studied music genres, the one that evoked the highest activity in the auditory-motor network. These findings are discussed in connection with acoustic analyses of the musical stimuli.