Neuroscience
-
It is well known that the central nervous system (CNS) is a complex neuronal network and its function depends on the balance between excitatory and inhibitory neurons. Disruption of the excitatory/inhibitory (E/I) balance is the main cause for the majority of the CNS diseases. In this review, we will discuss roles of the inhibitory system in the CNS diseases. ⋯ The GABAergic system consists of GABA, GABA transporters, GABAergic receptors and GABAergic neurons. Changes in any of these components may contribute to the dysfunctions of the CNS. In this review, we will synthesize studies which demonstrate how the GABAergic system participates in the pathogenesis of the CNS disorders, which may provide a new idea that might be used to treat the CNS diseases.
-
Protecting hippocampal neurons from death after seizure activity is critical to prevent an alteration of neuronal circuitry and hippocampal function. Here, we present a novel target, a truncated form of neogenin that is associated with seizure-induced hippocampal necroptosis, and novel use of the γ-secretase inhibitor N-[N-(3,5-difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester (DAPT) as a pharmacological regulator of neogenin truncation. We show that 3 days after pilocarpine-induced status epilepticus in mice, when hippocampal cell death is detected, the level of truncated neogenin is increased, while that of full-length neogenin is decreased. ⋯ In cultured hippocampal cells, kainic acid treatment significantly reduced the expression of full-length neogenin. Notably, treatment with DAPT prevented neogenin truncation and protected cultured neurons from N-methyl-D-aspartate (NMDA)-induced death. These data suggest that seizure-induced hippocampal necroptosis is associated with the generation of truncated neogenin, and that prevention of this by DAPT treatment can protect against NMDA-induced excitotoxicity.
-
Theta rhythm recorded as an extracellular synchronous field potential is generated in a number of brain sites including the hippocampus. The physiological occurrence of hippocampal theta rhythm is associated with the activation of a number of structures forming the ascending brainstem-hippocampal synchronizing pathway. ⋯ The posterior hypothalamic area plays an important role in movement control, place-learning, memory processing, emotion and arousal. In the light of multiplicity of functions of the posterior hypothalamic area and the influence of theta field oscillations on a number of neural processes, it is the authors' intent to summarize the data concerning the involvement of the supramammillary nucleus and posterior hypothalamic nuclei in the modulation of limbic theta rhythmicity as well as the ability of these brain structures to independently generate theta rhythmicity.
-
Randomized Controlled Trial
Olfactory modulation of the contingent negative variation to auditory stimuli.
Although pleasantness is intrinsically related to the perception of odors it is difficult to objectively assess odor-induced pleasantness. To evaluate the effects of odors of different valences on the contingent negative variation (CNV) in a younger and an older population. Data from 62 participants (27 men, 35 women) were included. ⋯ Overall, the results suggest the usefulness of CNV as an electrophysiological measure of cognition. However, in the present context, concomitantly applied odors of different hedonic tones exerted only minor effects on CNV. Thus, we conclude that odors have little or no effect on CNV.
-
Our objective was to compare brain responses to trigeminal and olfactory stimuli in frequent and non-frequent gum chewers in order to explore whether habitual exposure to trigeminal stimuli affects their central-nervous processing. In healthy subjects, fMRI brain scans were obtained for 20 frequent gum chewers (GC) and 20 non-frequent gum chewers (N'GC), in response to four odorous stimuli; 2 'trigeminal' (peppermint and spearmint) and 2 non-trigeminal or 'olfactory' (cherry and strawberry). During measurements, subjects reported intensity and pleasantness ratings for all stimuli. ⋯ Apart from olfactory areas (amygdala, insular cortex), trigeminal odors also produced activations in right thalamus and right substantia nigra. (3) In the GC group, olfactory odors produced higher bilateral insular cortex activation than in N'GC group, but no such differences were observed for trigeminal odors. GC subjects appeared to be more responsive to trigeminal chemosensory stimuli. However, this did not directly translate into differences in central-nervous activations to trigeminal stimuli; instead, the use of chewing gum was associated with stronger brain activation towards olfactory stimuli.