Neuroscience
-
Circadian rhythms are regulated by a set of brain structures, one of which is the Intergeniculate Leaflet of the Thalamus (IGL). The most recognised role of the IGL is the integration of a variety of stimuli affecting rhythmicity, such as lighting conditions, received by the eye, or light-independent (non-photic) cues, the information about which is delivered via the activation of the non-specific projections. One of them is the norepinephrinergic system originating in the brainstem Locus Coeruleus (LC). ⋯ Using both agonists and antagonists of specific NE receptor subtypes, we confirmed the presence of functional α1-, α2- and β-adrenergic receptors within the investigated structure, allowing NE to exert multiple types of effects on different IGL neurons, mainly depolarisation of the neurons projecting to the Suprachiasmatic Nuclei - the master circadian pacemaker, and various responses exhibited by the cells creating the connection with the contralateral IGL. Moreover, NE was shown to affect IGL cells both directly and via modulation of the synaptic network, in particular the miniature inhibitory postsynaptic currents. To the best of our knowledge, these are the first studies to confirm the effects of NE on the activity of the IGL network.
-
Serotonin transporter gene variance has long been considered an essential factor contributing to depression. However, meta-analyses yielded inconsistent findings recently, asking for further understanding of the link between the gene and depression-related symptoms. One key feature of depression is anhedonia. ⋯ Interestingly, the response time in 5-HTT+/+ rats increased as the session increased in general, while 5-HTT-/- rats tended to decrease. The response time difference might indicate that 5-HTT-/- rats altered willingness to exert cognitive effort to the categorization of generalization stimuli. These results suggest that the effect of 5-HTT ablation on decisional anhedonia is mild and interacts with learning, explaining the discrepant findings on the link between 5-HTT gene and depression.
-
The present study aimed to investigate the association between the serum SIRT1 protein and the severity of spinal cord injury (SCI) as well as the neurological recovery in mice. In this study, the wild-type (WT), Mx1-Cre+ SIRT1loxP/loxP (Mx1), and LCK-Cre+SIRT1loxP/loxP (LCK) mice were subjected to sham surgery, mild, moderate, or severe SCI, respectively. The serum was collected at intervals of 12 h, 1 day (d), 3 d, 5 d, 7 d, 10 d, 14 d, and 21 d after the injury. ⋯ The results demonstrated that about 7-10 d after SCI, the levels of SIRT1 protein in the serum correlated significantly with the severity of the injury and at 28 d post-injury, there was a distant neurological recovery (BMS score). The serum SIRT1 concentration in both the Mx1 and LCK mice in the sham group was significantly reduced compared to that in the WT mice, and there was a delayed increase in the serum SIRT1 levels after injury. These findings indicate that the SIRT1 concentrations in the serum of the SCI mice closely correlated with the acute severity and neurological outcome.
-
Burst suppression (BS) is an electroencephalogram (EEG) pattern in which signals alternates between high-amplitude slow waves (burst waves) and nearly flat low-amplitude waves (suppression waves). In this study, we used wide-field (8.32 mm × 8.32 mm) fluorescent calcium imaging to record the activity of glutamatergic neurons in the parietal and occipital cortex, in conjunction with EEG recordings under BS induced by different anesthetics (sevoflurane, isoflurane, and propofol), to investigate the spatiotemporal pattern of neural activity under BS. The calcium signal of all observed cortices was decreased during the phase of EEG suppression. ⋯ Correlation analysis showed a strong correlation between the EEG signal and the calcium signal in the medial cortex under BS (except for propofol induced signals). As the burst-suppression ratio (BSR) increased, the regions with strong correlation coefficients became smaller, but strong correlation coefficients were still noted in the medial cortex. Taken together, our results reveal the landscape of cortical activity underlying BS.
-
Ambient temperature changes trigger plastic biological responses. Cold temperature is detected by the somatosensory system and evokes perception of cold together with adaptive physiological responses. We addressed whether chronic cold exposure induces adaptive adjustments of (1) thermosensory behaviours, and (2) the principle molecular cold sensor in the transduction machinery, transient receptor potential melastatin subtype 8 (TRPM8). ⋯ Furthermore, subcutaneous injection of the TRPM8 agonist icilin, enhanced cold avoidance in both groups in the Thermal Gradient Test, but Cold group mice were significantly less affected by icilin. Primary sensory neuron soma are located in dorsal root ganglia (DRGs), and western blotting showed diminished TRPM8 levels in DRGs of Cold group mice, as compared to the Thermoneutral group. We conclude that acclimation to chronic cold altered thermosensory behaviours, so that mice appeared less cold sensitive, and potentially, TRPM8 is involved.