Neuroscience
-
Status epilepticus (SE) is a life-threatening neurological disorder that causes neuronal death and glial activation. Studies have explained the clinical side effects and lack of effectiveness of neurological disorder treatments based on sex-related differences in brain structure and function. However, the sex-specific outcomes of seizure disorders and the underlying mechanisms remain unknown. ⋯ Moreover, the mRNA levels of inflammatory cytokines released from activated glial cells were higher in male mice than in female mice. Notably, the mRNA level of astrocytic γ-aminobutyric acid transporter (GAT-3) involved in extracellular GABA uptake was lower in female mice than in male mice, while the mRNA levels of glutamate/aspartate transporter (GLAST (EAAT1)) and glutamate transporter (GLT-1 (EAAT2)) involved in extracellular glutamate uptake were higher in female mice. Our findings suggest that male mice are more vulnerable to SE than female mice, resulting in more extensive neuronal cell death and glial activation in male mice, partly due to increased GAT-3 expression that subsequently leads to reduced glial fibrillary acidic protein (GFAP)-positive GABA content assessed with anti-GABA antibodies.
-
Ketamine, an N-methyl-d-aspartate receptor (NMDAR) blocker, is gaining ground as a treatment option for depression. The occurrence of persistent psychosis and cognitive impairment after repeated use of ketamine remains a concern. N, N-dimethylglycine (DMG) is a nutrient supplement and acts as an NMDAR glycine site partial agonist. ⋯ The results showed that mice exhibited memory impairments, social withdrawal, increased head twitch response, reduced excitatory synaptic transmission, and lower LTP after repeated ketamine exposure. The ketamine-induced behavioral and synaptic deficits were prevented by co-treatment with DMG. In conclusion, these findings may pave a new path forward to developing a combination formula with ketamine and DMG for the treatment of depression and other mood disorders.
-
Recent studies have emphasized that adult hippocampal neurogenesis impairment may be associated with cognitive problems. Because cuprizone (CPZ), a copper-chelating reagent, was shown to decrease the production of new neurons, we aimed to further understand the involvement of adult hippocampal neurogenesis impairment in cognitive function by using a short-term (2-week) CPZ exposure paradigm. The CPZ-fed mice showed cognitive deficits, i.e., impaired sensorimotor gating and reduced social novelty preference, compared to normal-fed mice. ⋯ The densities of phosphorylated STAT3-positive (pSTAT3+) NSCs were higher in CPZ-fed mice than in normal-fed mice, while those of pSTAT3+ NPCs/NGCs were very low in both groups. Interestingly, the densities of bromodeoxyuridine-positive (BrdU+) NSCs were higher in CPZ-fed mice than in normal-fed mice 2 weeks after BrdU injection, while those of BrdU+ NPCs/NGCs were lower in CPZ-fed mice than in normal-fed mice. These findings suggest that short-term CPZ exposure inhibits differentiation of NSCs into NPCs via activation of STAT3, which may in part underlie cognitive deficits.
-
Voltage-gated Ca2+ (CaV) channels regulate multiple cell processes, including neurotransmitter release, and have been associated with several pathological conditions, such as neuropathic pain. Cdk5, a neuron-specific kinase, may phosphorylate CaV channels, altering their functional expression. During peripheral nerve injury, upregulation of CaV channels and Cdk5 in the dorsal root ganglia (DRG) and the spinal cord, has been correlated with allodynia. ⋯ Likewise, the Cdk5 inhibitor olomoucine affected the rapid and the slow C components of the cAP recorded in the dorsal roots. Patch-clamp recordings revealed an increase in T- and N-type currents recorded in the soma of acute isolated L3-4 sensory neurons after L5-6 SNL, which was prevented by olomoucine. These findings suggest changes in CaV channels location and function in L3-4 afferent fibers associated with Cdk5-mediated phosphorylation after L5-6 SNL, which may contribute to nerve injury-induced allodynia.
-
Recent evidence raised the importance of the cerebellum in emotional processes, with specific regard to negative emotions. However, its role in the processing of face emotional expressions is still unknown. This study was aimed at assessing whether face emotional expressions influence the cerebellar learning processes, using the delay eyeblink classical conditioning (EBCC) as a model. ⋯ The present study provides first evidence that the passive viewing of faces displaying emotional expressions, are processed by the cerebellum, with no apparent involvement of the brainstem and the cerebello-cortical connection. In particular, the view of sad faces, reduces the excitability of the cerebellar circuit underlying the learning phase of the EBCC. Differently, the extinction phase was shortened by both happy and sad faces, suggesting that different neural bases underlie learning and extinction of emotions expressed by faces.