Neuroscience
-
Adhesion G protein-coupled receptor A1 (ADGRA1) belongs to the G protein-coupled receptor (GPCR) family, and its physiological function remains largely unknown. We found that Adgra1 is highly and exclusively expressed in the brain, suggesting that Adgra1 may be involved in the regulation of neurological behaviors including anxiety, depression, learning and memory. To this end, we comprehensively analyzed the potential role of ADGRA1 in the neurobehaviors of mice by comparing Adgra1-/- and their wild-type (wt) littermates. ⋯ Further studies showed that ADGRA1 deficiency resulted in higher dendritic branching complexity and spine density as evidenced by elevated expression levels of SYN and PSD95 in amygdalae of male mice. Finally, we found that PI3K/AKT/GSK-3β and MEK/ERK in amygdalae of Adgra1-deficient male mice were aberrantly activated when compared to wt male mice. Together, our findings reveal an important suppressive role of ADGRA1 in anxiety control and synaptic function by regulating the PI3K/AKT/GSK-3β and MEK/ERK pathways in amygdalae of male mice, implicating a potential, therapeutic application in novel anti-anxiety drug development.
-
We studied the effects of inflammatory pain on working memory and correlated the pain effects with changes in dendritic spine density and glutamate signaling in the medial prefrontal cortex (mPFC) of male and female mice. Injection of Complete Freund's Adjuvant (CFA) into the hind paw modeled inflammatory pain. The CFA equally decreased the mechanical thresholds in both sexes. ⋯ Furthermore, while the CFA injection decreased the expression of the glutamate transporter VGlut1 on the soma of mPFC neurons in both sexes, the decrease was sex dependent. We concluded that inflammatory pain, which increases sensory input into the mPFC neurons, may impair working memory by altering the glutamate signaling. The glutamate deficit that develops as a result of the pain is more pronounced in male mice in comparison to female mice.