Neuroscience
-
Oxytocin (OT) and vasopressin (AVP) are two closely related neuropeptides implicated in learning and memory processes, anxiety, nociception, addiction, feeding behavior and social information processing. Regarding learning and memory, OT has induced long-lasting impairment in different behaviors, while the opposite was observed with AVP. We have previously evaluated the effect of peripheral administration of OT or its antagonist (AOT) on the inhibitory avoidance response of mice and on the modulation of cholinergic mechanisms. ⋯ Administration of anticholinesterases inhibitors with access to the central nervous system (CNS), the activation of muscarinic acetylcholine (Ach) receptors and the increase of evoked ACh release using linopirdine (Lino) (3-10 µg/kg, IP), reversed the impairment of retention performance induced by OT. Besides, either muscarinic or nicotinic antagonists with unrestricted access to the CNS reduced the magnitude of the performance-facilitating effect of AOT's central infusion. We suggest that OT might induce a cholinergic hypofunction state, resulting in an impairment of IA memory formation, a process for which the cholinergic system is crucially necessary.
-
Many anxiety disorders can be characterized by abnormalities in detecting and learning about threats, and the inability to reduce fear responses in non-threatening environments. PTSD may be the most representative of context processing pathology, as intrusive memories are experienced in "safe" contexts. The ventral subiculum (vSUB), the main output of the ventral hippocampus, encodes environmental cues and is critical for context processing. ⋯ Our data reveal less activation of the vSUB-BNST pathway in both males and females in aversive contexts and the greatest activation when animals explored a neutral familiar context. In addition, the vSUB of females contained fewer GABAergic neurons compared to males. These findings suggest that the vSUB-BNST pathway is involved in eliciting appropriate responses to contexts.
-
Varicella zoster virus (VZV) is responsible for chronic pain. VZV injection has similarities to herpes zoster (HZ) "shingles" pain in humans. In this study orofacial pain was induced by injecting male rats with the human VZV. ⋯ Attenuating Nrxn3 expression also increases VZV associated orofacial pain. Activating GABAergic neurons within the central amygdala with opsins increase GABA release in the parabrachial and reduced the pain response after Nrxn3 shRNA treatment. These results are consistent with the idea that Nrxn3 within the central amygdala controls VZV associated pain by regulating GABA release in the lateral parabrachial that then controls the activity of ascending pain neurons.
-
Subtypes of microglia/macrophage regulate the inflammation in the opposite direction during ischemic stroke. JAK2/STAT3 signaling pathway participates in the development of stroke-related inflammation via ischemic stimulation. However, the relationship between JAK2/STAT3 pathway and microglia/macrophage phenotype transformation is unclear. ⋯ Collectively, these results reveal that JAK2/STAT3 signaling pathway regulates the microglia/macrophage polarization (skewing toward the M2 polarization) during the CIRI, thus alleviating brain damage. Therefore, approaches targeting JAK2/STAT3 activation are promising therapies for ischemic stroke.
-
Interlimb coordination deteriorates as a result of aging. Due to its ubiquity in daily life, a greater understanding of the underlying neurophysiological changes is required. Here, we combined electroencephalography time-frequency spectral power and functional connectivity analyses to provide a comprehensive overview of the neural dynamics underlying the age-related deterioration of interlimb coordination involving all four limbs. ⋯ Overall, spectral results suggest that enhanced beta desynchronization in older adults reflects a successful compensatory mechanism to cope with increased difficulty during complex interlimb coordination. Functional connectivity results suggest that theta and alpha band connectivity are prone to respectively task- and age-related modulations. Future work could target these spectral and functional connectivity dynamics through noninvasive brain stimulation to potentially improve interlimb coordination in older adults.