Neuroscience
-
Two important themes in Ivan Izquierdo's research each offered both answers and questions about the topic of memory formation and maintenance. The first theme provided evidence supporting the view that short- and long-term memory were distinct processes and could be selectively modulated by several treatments, with some affecting only short-term, others only affecting long-term memory, and still others affecting both. Over many years, Izquierdo's laboratory documented molecular responses across time after training obtaining results that showed differences as well as similarities in the biochemical changes during the first 1-2 h and the next 4-6 h after training, i.e., during the transition from short- to long-term memory. ⋯ Remarkably, these waves of susceptibility to modification were accompanied by biphasic changes in molecular measures at similar times after training. Remarkably, some of the molecular players exhibited persistent changes after training, with increases in levels lasting days following the training experience. These persistent molecular changes may reveal a biological basis for the dynamic nature of memories seen long after the initial memory is consolidated.
-
Social recognition is the ability of animals to identify and recognize a conspecific. The consolidation of social stimuli in long-term memory is crucial for the establishment and maintenance of social groups, reproduction and species survival. Despite its importance, little is known about the circuitry and molecular mechanisms involved in the social recognition memory (SRM). ⋯ The animals that received infusions of 5-HT5A receptor antagonist SB-699551 (10 µg/µL), 5-HT6 receptor agonist WAY-208466 (0.63 µg/µL) or 5-HT7 receptor agonist AS-19 (5 µg/µL) intra-CA1 were unable to recognize the familiar juvenile. This effect was blocked by the coinfusion of WAY-208466 plus 5-HT6 receptor antagonist SB-271046 (10 µg/µL) or AS-19 plus 5-HT7 receptor antagonist SB-269970 (5 µg/µL). The present study helps to clarify the neurobiological functions of the 5-HT receptors more recently described and extends our knowledge about mechanisms underlying the SRM.
-
Fear memories allow animals to recognize and adequately respond to dangerous situations. The prelimbic cortex (PrL) is a crucial node in the circuitry that encodes contextual fear memory, and its activity is central for fear memory expression over time. However, while PrL has been implicated in contextual fear memory storage, the molecular mechanisms underlying its maintenance remain unclear. ⋯ Also, PKMζ inhibition in the PrL does not impair the maintenance of recent contextual fear memory. However, we found that inhibition of prelimbic PKMζ at a remote time point disrupts contextual fear memory maintenance, and that blocking GluA2-dependent removal of AMPARs prevents this impairment. Our results confirm the central role of PrL in fear memory and identify PKMζ-induced inhibition of GluA2-containing AMPAR endocytosis as a key mechanism governing remote contextual fear memory maintenance.
-
Microglia are unique cells in the central nervous system (CNS), being considered a sub-type of CNS macrophage. These cells monitor nearby micro-regions, having roles that far exceed immunological and scavengering functions, being fundamental for developing, protecting and maintaining the integrity of grey and white matter. Microglia might become dysfunctional, causing abnormal CNS functioning early or late in the life of patients, leading to neurologic or psychiatric disorders and premature death in some patients. ⋯ Alzheimer Disease is the prototype of the neurodegenerative disorders associated with these TREM2 variants, named here the Microgliopathies Type II. Here, we review clinical, pathological and some molecular aspects of human diseases associated with primary microglia dysfunctions and briefly comment some possible therapeutic approaches to theses microgliopathies. We hope that our review might update the interesting discussion about the impact of intrinsic microglia dysfunctions in the genesis of some pathologic processes of the CNS.
-
The present paper provides a comprehensive review of latent extinction. In maze learning situations, latent extinction involves confining an animal to a previously reinforced goal location without food. When returned to the starting position after latent extinction, the animal typically shows a response decrement. ⋯ The hippocampus is critically involved in latent extinction, whereas other brain regions typically implicated in regular "response extinction" in the maze, such as the dorsolateral striatum, are not required for latent extinction. Similar to other kinds of learning, latent extinction requires NMDA receptor activity, suggesting the involvement of synaptic plasticity. Consistent with a multiple memory systems perspective, research on latent extinction supports the hypothesis that extinction learning is not a unitary process but rather there are different kinds of extinction learning mediated by distinct neural systems.