Neuroscience
-
Ischemic heart disease is a fatal cardiovascular disease that irreversibly impairs the function of the heart, followed by reperfusion leading to a further increase in infarct size. Clinically, we call it myocardial ischemia-reperfusion injury (MIRI). A growing number of clinical observations and experimental studies have found electroacupuncture (EA) to be effective in alleviating MIRI. ⋯ The results were similar to the inhibition of glutamatergic neurons in FN. However, the activation of glutamatergic neurons in FN diminished the aforementioned effects of EA pretreatment. This study revealed that glutamatergic neurons in FN of the cerebellum is involved in EA pretreatment mediated sympathetic nervous and may be a potential mediator for improving MIRI.
-
Comorbidity of post-traumatic stress disorder (PTSD) and alcohol use disorder (AUD) worsens the prognosis for each of these individual disorders. The current study aimed to identify neurocircuits potentially involved in regulation of PTSD-AUD comorbidity by mapping expression of c-Fos in male and female C57BL/6J mice following repeated predator stress (PS), modeled by exposure to dirty rat bedding. In experiment 1, the levels of c-Fos in the paraventricular nucleus of the hypothalamus (PVH) and the nucleus accumbens shell were higher after the second PS vs the first PS, indicating a sensitized response to this stressor. ⋯ Taken together, these data demonstrate that repeated PS exposure and voluntary alcohol consumption increase neuronal activity across neurocircuits in which specific components depend on the vulnerability of individual mice to these stressors. Increased PVH activity observed across both experiments suggests this brain area as a potential mediator of PS-induced increases in alcohol consumption. Future investigations of specific neuronal populations within the PVH activated by PS, and manipulation of these specific neuronal populations, could improve our understanding of the mechanisms leading to PTSD-AUD comorbidity.
-
Selective serotonin reuptake inhibitors (SSRIs) are the first-line pharmacological treatment for a variety of anxiety-, trauma- and stressor-related disorders. Although they are efficacious, therapeutic improvements require several weeks of treatment and are often associated with an initial exacerbation of symptoms. The dorsal raphe nucleus (DR) has been proposed as an important target for the modulation of emotional responses and the therapeutic effects of SSRIs. ⋯ Acute fluoxetine decreased serotonergic activity in the DR, while chronic treatment led to serotonergic activity that was indistinguishable from that of control levels in DRD and DRV subpopulations. Chronic fluoxetine facilitated fear extinction, which was associated with rostral DRD inhibition. These findings provide further evidence that SSRIs can alter aspects of learning and memory processes and are consistent with a role for discrete populations of DR serotonergic neurons in regulating fear- and anxiety-related behaviours.
-
Spinal cord injuries (SCIs) often result in limited prospects for recovery and a high incidence of disability. Melatonin (Mel), a hormone, is acknowledged for its neuroprotective attributes. Mel was examined in this study to discover if it alleviates SCIs via the sirtuin1/dynamin-related protein1 (SIRT1/Drp1) signaling pathway. ⋯ Additionally, Mel exhibited the potential to mitigate neuronal mitochondrial dysfunction by modulating the levels of Drp1 and TOMM20, thereby addressing the underlying factors contributing to this dysfunction. Furthermore, when SIRT1 was downregulated, it reversed the positive effects of Mel. Overall, our present study suggests that Mel has the capacity to modulate the SIRT1/Drp1 pathway, thereby ameliorating mitochondrial dysfunction, attenuating inflammation and apoptosis, and enhancing neural function subsequent to SCIs.
-
Neuropathic pain is a debilitating chronic pain condition and is refractory to the currently available treatments. Emerging evidence suggests that melatonin exerts analgesic effects in rodent models of neuropathic pain. Nevertheless, the exact underlying mechanisms of the analgesic effects of melatonin on neuropathic pain are largely unknown. ⋯ In addition, we found that EX527 impeded the inhibitory effects of melatonin on the SNL-induced increased expression of cytokines tumor necrosis factor-alpha (TNF-α) and interleukin-1 beta (IL-1β). In conclusion, the above data demonstrated that melatonin alleviated mechanical allodynia and hyperalgesia induced by peripheral nerve injury via SIRT1 activation. Melatonin resolved mitochondrial dysfunction-oxidative stress-dependent and neuroinflammation mechanisms that were driven by SIRT1 after nerve injury.