Neuroscience
-
Case Reports
Functional Evaluation of a Novel GRIN2B Missense Variant Associated with Epilepsy and Intellectual Disability.
Epilepsy, a neurological condition, is widely prevalent among individuals with intellectual disability (ID). It is well established that N-methyl-D-aspartate (NMDA) receptors play an important role in both epilepsy and ID. Autosomal dominant mutations in the GRIN2B gene, which encodes the GluN2B subunit of the NMDA receptor, have been reported to be associated with epilepsy and ID. ⋯ It is accompanied by reduced delivery of the receptors to the cell membrane and a decrease in glutamate affinity. Moreover, primary neurons expressing GluN2B-K1091T also exhibited impaired surface expression of NMDA receptors, a reduction in dendritic spine number and excitatory synaptic transmission. In summary, our study reports a novel GRIN2B mutation and provides functional characteristics of this mutation in vitro, thereby contributing to the understanding of GRIN2B variants in epilepsy and ID.
-
Current data suggest a hypothesis of vascular pathogenesis for the development and progression of Alzheimer's disease (AD). To investigate this, we studied the association of apolipoprotein E4 (APOE4) gene on microvessels in human autopsy-confirmed AD with and without APOE4, compared with age/sex-matched control (AC) hippocampal CA1 stratum radiatum. AD arterioles (without APOE4 gene) had mild oxidative stress and loss of vascular endothelial growth factor (VEGF) and endothelial cell density, reflecting aging progression. ⋯ This cell over-proliferation was inhibited with the antioxidants N-acetyl cysteine and MnTMPyP, the HIF-1α inhibitor echinomycin, the VEGFR-2 receptor blocker SU1498, the protein kinase C (PKC) ε knock-down (KD) and the extracellular signal-regulated kinase 1/2 (ERK) inhibitor FR180204. The PKCε KD and echinomycin decreased VEGF and/or ERK. In conclusion, AD capillaries and arterioles in hippocampal CA1 stratum radiatum of non-APOE4 carriers are related with aging, while those in APOE4 carriers with AD are related with pathogenesis of cerebrovascular disease.
-
Visually guided reaching is a common motor behavior that engages subcortical circuits to mediate rapid corrections. Although these neural mechanisms have evolved for interacting with the physical world, they are often studied in the context of reaching toward virtual targets on a screen. These targets often change position by disappearing from one place reappearing in another instantaneously. ⋯ In one condition, the objects moved very rapidly from one place to another. In the other condition, illuminated targets instantaneously switched position by being extinguished in one position and illuminating in another. Participants were consistently faster in correcting their reach trajectories when the object moved continuously.
-
Executive functions, essential for daily life, are known to be impaired in older age. Some executive functions, including working memory updating and value-based decision-making, are specifically sensitive to age-related deterioration. While their neural correlates in young adults are well-described, a comprehensive delineation of the underlying brain substrates in older populations, relevant to identify targets for modulation against cognitive decline, is missing. ⋯ Stepwise linear regression showed that cingulum bundle FA added significant incremental contribution to the variance explained by fronto-angular FC alone. Our findings provide a characterization of distinct functional and structural connectivity correlates associated with performance of specific executive functions. Thereby, this study contributes to the understanding of the neural correlates of updating and decision-making functions in older adults, paving the way for targeted modulation of specific networks by modulatory techniques such as behavioral interventions and non-invasive brain stimulation.
-
Alzheimer's disease (AD) is the most common neurodegenerative disease, and currently, no effective treatment strategies exist for this condition. MicroRNAs (miRNAs) have emerged as promising therapeutic targets of AD. Previous studies have highlighted the significant role of miR-146a-5p in regulating adult hippocampal neurogenesis (AHN). ⋯ Interestingly, both miR-146a-5p antagomir and p-Stat3 inhibitor obviously rescued neurogenesis and pattern separation in APP/PS1 mice. Moreover, application of miR-146a-5p agomir reversed the protective effects of Klf4 upregulation. These findings open new avenues for protection against AD through the modulation of neurogenesis and cognitive decline via the miR-146a-5p/Klf4/p-Stat3 pathway.