Neuroscience
-
Brain injury represents a leading cause of deaths following cardiac arrest (CA) and cardiopulmonary resuscitation (CPR). This study explores the role of CREB1 (cAMP responsive element binding protein 1)/DAPK1 (death associated protein kinase 1) axis in brain injury after CPR. CA was induced by asphyxia in rats, followed by CPR. ⋯ CREB1 was enriched on the DAPK1 promoter and suppressed DAPK1 expression. DAPK1 overexpression reversed the inhibition of OGD/R-insulted apoptosis by CREB1 overexpression. To conclude, CREB1 suppresses hippocampal neuron apoptosis and mitigates brain injury after CPR by inhibiting DAPK1 expression.
-
Perceptual experience is shaped by a complex interaction between our sensory systems in which each sense conveys information on specific properties of our surroundings. This multisensory processing of complementary information improves the accuracy of our perceptual judgments and leads to more precise and faster reactions. Sensory impairment or loss in one modality leads to information deficiency that can impact other senses in various ways. ⋯ Investigating individuals with deafness (N = 73), early (N = 51), late blindness (N = 49) and corresponding controls, we compared tactile sensitivity using the standard monofilament test on two locations, the finger and handback. Results indicate lower tactile sensitivity in people with deafness and late blindness but not in people with early blindness compared to respective controls, irrespective of stimulation location, gender, and age. Results indicate that neither sensory compensation nor simple use-dependency or a hindered development of the tactile sensory system is sufficient to explain changes in somatosensation after the sensory loss but that a complex interaction of effects is present.
-
Brain injury is a major cause of death and disability after cardiac arrest (CA). Previous studies have shown that activating GABAB receptors significantly improves neurological function after CA, but the mechanism of this neuronal protection of damaged neurons remains unclear. Thus, the present study aimed to investigate whether GABAB receptor activation protects against neuronal injury and to reveal the underlying protective mechanisms. ⋯ Moreover, activation of the GABAB receptor exerted a protective effect on neurons both in vivo and in vitro. Baclofen attenuated caspase-11 activation and neuronal pyroptosis after CA, and the anti-neuronal pyroptosis effect of baclofen was abolished by overexpression of caspase-11 in neuronal cells. In conclusion, GABAB receptor activation may play a neuroprotective role by alleviating neuronal pyroptosis through a mechanism involving caspase-11.
-
Epilepsy is a disabling and drug-refractory neurological disorder. Long non-coding RNAs (lncRNAs) play a vital role in neuronal function and central nervous system development. This study aimed to explore the regulatory mechanism of lncRNA five prime to Xist (FTX) in cell ferroptosis following epilepsy to provide a theoretical foundation for epilepsy management. ⋯ FTX regulated GABPB1 expression by targeting miR-142-5p. In conclusion, FTX overexpression mitigated ferroptosis of MGF-induced neurons through the miR-142-5p/GABPB1 axis. In conclusion, lncRNA FTX inhibited ferroptosis of MGF-induced rat hippocampal neurons via the miR-142-5p/GABPB1 axis.
-
Sickle cell disease (SCD) is an inherited blood disorder that is associated with acute episodic and chronic pain. Mice with SCD have robust hyperalgesia mediated, in part, by sensitization of spinal dorsal horn neurons. However, underlying mechanisms are not fully understood. ⋯ Spontaneous activity and responses of ON, OFF and Neutral cells evoked by heat (50 °C) and mechanical (26 g) stimuli applied to the hind paw were compared between sickle and control mice. Although there were no differences in the proportions of functionally-identified neurons or spontaneous activity between sickle and control mice, evoked responses of ON cells to heat and mechanical stimuli were increased approximately 3-fold in sickle mice as compared to control mice. Thus, the RVM contributes to hyperalgesia in sickle mice via a specific ON cell-dependent descending facilitation of nociceptive transmission.