Neuroscience
-
Muscle pain is an important determinant of exercise tolerance, but its relationship with neurophysiological responses during a submaximal exercise trial is unclear. The purpose of this study was to determine the effect of persistent contralateral pain on neurophysiological function and perceptual responses during ipsilateral isometric knee extensions to task failure. Ten participants performed a single-leg repeated submaximal isometric knee extensions with (PAIN) or without (CTRL) constant pain induced by intermittent blood flow occlusion combined with evoked muscle contraction applied to the contralateral, resting leg. ⋯ Additionally, no differences between CTRL and PAIN were demonstrated for any TMS-derived measures assessing corticospinal responses. Exercising leg pain was higher in CTRL (P = 0.018), as was perceived exertion (P = 0.030). Overall, when using a persistent, submaximal experimental pain intervention, it appears that although muscle pain compromises exercise tolerance, this phenomenon occurs independently of potential alterations in corticomotor mechanisms.
-
Bipolar disorder may begin as depression or mania, which can affect the treatment and prognosis of bipolar disorder. However, the physiological and pathological differences of pediatric bipolar disorder (PBD) patients with different onset symptoms are not clear. The purpose of this study was to investigate the differences of clinical, cognitive function and intrinsic brain networks in PBD patients with first-episode depression and first-episode mania. ⋯ And significant associations of brain activity with clinical assessments or cognition were found in different patients. In conclusion, we found differential impairments in cognitive and brain network activation in first-episode depressive and first-episode manic PBD patients, and correlations were found between these impairments. These evidences may shed light on the different developmental paths of bipolar disorder.
-
Vitamin D3 may suppress microglial activation and neuroinflammation, which play a central role in the pathophysiology of many neurological disorders. Sirt6 can remove histone 3 lysine 9 acetylation (H3K9ac) to repress expression of pathological genes and produce anti-inflammatory effects. However, whether vitamin D3 upregulates microglial Sirt6 to exert its protective effects against microglial activation and neuroinflammation is unclear. ⋯ Moreover, vitamin D3 promoted microglial Sirt6 distribution and attenuated microglia displaying an activated morphology in the hippocampus of LPS-stimulated mice. Similarly, vitamin D3 upregulated Sirt6 generation and intensity, reduced H3K9ac levels, and inhibited the inflammatory activation of LPS-stimulated BV-2 cells. In conclusion, vitamin D3 may upregulate microglial Sirt6 to reduce H3K9ac and inhibit microglial activation, thereby antagonizing neuroinflammation.
-
Ischemic stroke is one of the main causes of serious disability and death worldwide. NLRP3 inflammasome is an intracellular pattern recognition receptor composed of polyprotein complex, which participates in mediating a series of inflammatory responses and is considered as a potential target for the treatment of ischemic stroke. Vinpocetine, a derivative of vincamine, has been widely used in the prevention and treatment of ischemic stroke. ⋯ Vinpocetine can effectively inhibit the apoptosis of peri-infarct neurons, promote the expression of Bcl-2, inhibit the expression of Bax and Cleaved Caspase-3, and reduce the proliferation of peri-infarct microglia. In addition, vinpocetine, like MCC950, can reduce the expression of NLRP3 inflammasome. Therefore, vinpocetine can effectively alleviate the ischemia-reperfusion injury in mice, and the inhibition of NLRP3 inflammasome may be an important therapeutic mechanism of vinpocetine.
-
Perceptual experience is shaped by a complex interaction between our sensory systems in which each sense conveys information on specific properties of our surroundings. This multisensory processing of complementary information improves the accuracy of our perceptual judgments and leads to more precise and faster reactions. Sensory impairment or loss in one modality leads to information deficiency that can impact other senses in various ways. ⋯ Investigating individuals with deafness (N = 73), early (N = 51), late blindness (N = 49) and corresponding controls, we compared tactile sensitivity using the standard monofilament test on two locations, the finger and handback. Results indicate lower tactile sensitivity in people with deafness and late blindness but not in people with early blindness compared to respective controls, irrespective of stimulation location, gender, and age. Results indicate that neither sensory compensation nor simple use-dependency or a hindered development of the tactile sensory system is sufficient to explain changes in somatosensation after the sensory loss but that a complex interaction of effects is present.