Neuroscience
-
The purpose of this study was to assess, from a behavioral, biochemical, and molecular standpoint, how exercise training affected fibromyalgia (FM) symptoms in a reserpine-induced FM model and to look into the potential involvement of the hippocampal PGC-1α/FNDC5/BDNF pathway in this process. Reserpine (1 mg kg-1) was subcutaneously injected once daily for three consecutive days and then the rats were exercised for 21 days. Mechanical allodynia was evaluated 1, 11, and 21 days after the last injection. ⋯ These behavioral abnormalities were found to be correlated with elevated blood cytokine levels, reduced serotonin levels in the prefrontal cortex, and altered PGC-1α/FNDC5/BDNF pathway in the hippocampus (p < 0.05). Interestingly, exercise training attenuated all the neuropathological changes mentioned above (p < 0.05). These results imply that exercise training restored behavioral, biochemical, and molecular changes against reserpine-induced FM-like symptoms in rats, hence mitigating the behavioral abnormalities linked to pain, depression, and cognitive functioning.
-
The present research study aimed to investigate the role of Ascorbic acid (AA) on synaptic plasticity, learning, and memory impairment induced by unpredicted chronic mild stress (CUMS) in adolescent male rats. Adolescent male rats were divided into: 1) vehicle, 2) CUMS, 3-5) CUMS plus various doses of AA by oral gavage (CUMS-10/100/400 mg/kg), and 6) AA400 mg/kg by oral gavage. In Morris Water Maze, the time latency decreased, while the time spent in the target quadrant increased in CUMS group treated with AA at the dose of 400 mg/kg. ⋯ IL-10, BDNF and Ki67 increased, while TNF-a and AChE activity were decreased in CUMS group treated with AA simultaneously. The results of our study showed that chronic stress during adolescence could cause learning and memory disorders as well as synaptic plasticity. In addition, we showed that AA can prevent this problem by reducing oxidative stress, inflammation, increasing the amount of BDNF, and neurogenesis.
-
Stroke is one of the leading causes of disability worldwide, where the Hippocampus (HPC) is affected. HPC organizes memory, which is a cognitive domain compromised after a stroke, where cerebrolysin (CBL) and Nicotinamide (NAM) have been recognized as potentially therapeutic. In this study, we aimed to evaluate the efficacy of a combined administration of CBL and NAM in a rat stroke model. ⋯ Moreover, a combination of CBL and NAM increased dendritic intersection in CA1 pyramidal neurons. Thus, the combined administration of CBL and NAM can promote cognitive recovery after a stroke, with infarct reduction, cytoarchitectural changes in HPC CA1 neurons, and BDNF increase. Our findings suggest that this combination therapy could be a promising intervention strategy for stroke.
-
We aimed to evaluate the role of the spinal lymphatic system in spinal cord injury and whether it has an impact on recovery after spinal cord injury. Flow cytometry was used to evaluate the changes in the number of microvesicles after spinal cord injury. Evans blue extravasation was used to evaluate the function of the lymphatic system. ⋯ Microvesicles released after spinal cord injury can enter the thoracic duct and then enter the blood through the lymph around the spine. After ligation of the thoracic duct, it can aggravate the neuropathological manifestations and limb function after spinal cord injury. The potential mechanism may involve nuclear factor-kappa B pathway.
-
Prophylactic effects of N-acethylcysteine on inflammation-induced depression-like behaviors in mice.
Depression, affecting individuals worldwide, is a prevalent mental disease, with an increasing incidence. Numerous studies have been conducted on depression, yet its pathogenesis remains elusive. Recent advancements in research indicate that disturbances in synaptic transmission, synaptic plasticity, and reduced neurotrophic factor expression significantly contribute to depression's pathogenesis. ⋯ Following treatment with NAC, the previously mentioned levels improved, indicating an enhancement in both synaptic transmission and synaptic plasticity. Our results suggest that NAC exerts a protective effect on mouse models of inflammatory depression, potentially through the enhancement of synaptic transmission and plasticity, as well as the restoration of neurotrophic factor expression. These findings offer vital animal experimental evidence supporting NAC's role in mitigating inflammatory depressive behaviors.