Neuroscience
-
The perirhinal cortex (PRC) and parahippocampal cortex (PHC) are core regions along the visual dual-stream. The specific functional roles of the PRC and PHC and their interactions with the downstream hippocampus cortex (HPC) are crucial for understanding visual memory. Our research used human intracranial EEGs to study the neural mechanism of the PRC, PHC, and HPC in visual object encoding. ⋯ Inter-regional analyses showed strong bidirectional interactions of the PRC with both the PHC and HPC in the low-frequency band, whereas the interactions between the PHC and HPC were not significant. These findings demonstrated the core role of the PRC in encoding visual object information and supported the hypothesis of PRC-HPC-ventral object pathway. The recruitment of the PHC and its interaction with the PRC in visual object encoding also provide new insights beyond the traditional dorsal-stream hypothesis.
-
Review Meta Analysis
Peripheral CD4+ T helper lymphocytes alterations in major depressive disorder: A systematic review and meta-analysis.
Previous research has shown that patients with major depressive disorder (MDD) develop immune dysfunction. However, the exact alterations of cluster of differentiation (CD)4+ T helper (Th) lymphocytes in MDD remains unclear. This meta-analysis aimed to examine the specific changes in CD4+ Th cells. ⋯ Heterogeneity was large (I2:18.1-95.2 %), and possible sources of heterogeneity were explored (e.g., age, depression scale, country, and antidepressant use). Our findings indicate that peripheral CD4+ T cells in depressed patients exhibit features of adaptive immune dysfunction, as evidenced by increased CD4+ Th cells and CD4+/CD8+ and decreased Treg cells. These findings offer insights into the underlying mechanism of MDD.
-
Exposure to environmental microplastics has been demonstrated to impact health. However, its effect on development remains unclear. This study investigated whether consumption of nanoplastics (NPx) during development affects social and cognitive functions in rodents. ⋯ Social behavior was similarly affected by NPx treatment, with GTD13 and PND56 groups displaying decreased familiarity. Additionally, NPx treatment enhanced local field potentials in the prefrontal cortex, nucleus accumbens, and amygdala of GTD7 group and in the striatum of GTD13 group, while amphetamine treatment induced changes of local field potentials compared to saline treatment in the prefrontal cortex and the ventral tegmental area of CTR, GTD7, PND21, and PND56 groups. Taken together, these results showed that NPx treatment induced changes in social behavior partly depending on developmental stage, and these changes are associated with neural circuits innervated by the dopamine system.
-
Obesity continues to rise in prevalence and financial burden despite strong evidence linking it to an increased risk of developing several chronic diseases. Dopamine response and receptor density are shown to decrease under conditions of obesity. However, it is unclear if this could be a potential mechanism for treatment without drugs that have a potential for abuse. ⋯ Additionally, aerobic treadmill exercise enhanced the sensitivity to amphetamine (AMPH) in this same group of exercised, HF-fed females. The estrous cycle might influence the ability of exercise to enhance dopamine signaling in females, an effect not observed in male groups. Further research into females by estrous cycle phase, in addition to determining the optimal intensity and duration of aerobic exercise, are logical next steps.
-
Alzheimer's disease (AD) is one of the most progressive and prevalent types of neurodegenerative diseases in the aging population (aged >65 years) and is considered a major factor for dementia, affecting 55 million people worldwide. In the current scenario, drug-based therapies have been employed for the treatment of Alzheimer's disease but are only able to provide symptomatic relief to patients rather than a permanent solution from Alzheimer's. Recent advancements in stem cell research unlock new horizons for developing effective and highly potential therapeutic approaches due to their self-renewal, self-replicating, regenerative, and high differentiation capabilities. ⋯ They have been seen to substantially promote neurogenesis, synaptogenesis by secreting neurotrophic growth factors, as well as in ameliorating the Aβ and tau-mediated toxicity. This review covers the pathophysiology of AD, new medications, and therapies. Further, it will focus on the advancements and benefits of Mesenchymal Stem Cell therapies, their administration methods, clinical trials concerning AD progression, along with their future prospective.