Neuroscience
-
Anxiety disorders are prevalent chronic psychological disease with complex pathogenic mechanisms. Current anxiolytics have limited efficacy and numerous side effects in many anxiety patients, highlighting the urgent need for new therapies. Recent research has been focusing on nutritional supplements, particularly amino acids, as potential therapies for anxiety disorders. ⋯ Long-term administration of L-Cysteine has anxiolytic, antidepressant, and memory-improving effects. L-Cysteine depletion can lead to increased oxidative stress in the brain. This review delves into the potential mechanisms of L-Cysteine and its main products, glutathione (GSH) and hydrogen sulfide (H2S) in the management of anxiety and related diseases.
-
Both alcohol misuse and sleep deficiency are associated with deficits in semantic processing. However, alcohol misuse and sleep deficiency are frequently comorbid and their inter-related effects on semantic processing as well as the underlying neural mechanisms remain to be investigated. ⋯ Alcohol misuse may lead to reduced MFG activation while sleep deficiency hinder semantic processing by suppressing PCG activity in women. The pathway model underscores the influence of sleep quality and alcohol consumption severity on semantic processing in women, suggesting that sex differences in these effects need to be further investigated.
-
Spinocerebellar ataxia type 3 (SCA3) is a neurodegenerative disorder caused by mutant ataxin-3 with an abnormally expanded polyQ tract and is the most common dominantly inherited ataxia worldwide. There are no suitable therapeutic options for this disease. Autophagy, a defense mechanism against the toxic effects of aggregation-prone misfolded proteins, has been shown to have beneficial effects on neurodegenerative diseases. ⋯ Western blot and total antioxidant capacity assays suggested that trehalose had great therapeutic potential for treating SCA3, likely through its antioxidant activity. Our data indicate that trehalose plays a neuroprotective role in SCA3 by inhibiting the aggregation and reducing the protein level of ataxin-3, which is also known to protect against oxidative stress. These findings provide a new insight into the possibility of treating SCA3 with trehalose and highlight the importance of inducing autophagy in SCA3.
-
Without a functioning prefrontal cortex, humans and other animals are impaired in measures of cognitive control and behavioral flexibility, including attentional set-shifting. However, the reason for this is unclear with evidence suggesting both impaired and enhanced attentional shifting. We inhibited the medial prefrontal cortex (mPFC) of rats while they performed a modified version of an attentional set-shifting task to explore the nature of this apparent contradiction. ⋯ However, in the modified task, mPFC inactivation abolished ED shift-costs. The results support the suggestion that the mPFC is needed for the downregulation of attention that prevents learning about redundant and irrelevant stimuli. With mPFC inactivated, the rat learns more rapidly when previously redundant exemplars become the only relevant information.
-
Microglia are important innate immune cells in the brain, and a rich diversity of subtypes has recently been discovered that expand beyond the traditional classification of traditional M1 (pro-inflammatory) and M2 (anti-inflammatory) classifications. Intracerebral hemorrhage (ICH) is a devastating form of stroke, and the understanding of its later-stage pathological mechanisms remains incomplete. In this study, through the analysis of single-cell transcripts from mice brains 14 days post-ICH, three disease-associated expression patterns of microglia were identified. ⋯ These findings were further validated through immunofluorescence in both mouse and human specimens. In addition, analysis of single-cell transcripts from mice brains 3 days post-ICH suggested that microglia involved in lipid metabolism and phagocytosis likely emerge from early proliferating populations. Given the distinct origins and phenotypic characteristics of pro-inflammatory and reparative microglia, interventions targeting these cells hold the potential to modulate the delicate balance between injury and repair during the pathophysiological process of ICH, highlighting a pivotal direction for future therapeutic strategies.