Neuroscience
-
Glymphatic system dysfunction in mood disorders: Evaluation by diffusion magnetic resonance imaging.
The glymphatic system, an expansive cerebral waste-disposal network, harbors myriad enigmatic facets necessitating elucidation of their nexus with diverse pathologies. Murine investigations have revealed a relationship between the glymphatic system and affective disorders. This study aimed to illuminate the interplay between bipolar disorder and the glymphatic system. ⋯ A free-water imaging analysis revealed a substantial elevation in the free-water index within the white-matter tracts, prominently centered on the corpus callosum, within the bipolar cohort relative to that in the control group. In analogous cerebral regions, a conspicuous affirmative correlation was observed between the free-water-corrected radial diffusivity and depression rating scales. Our results showed that the protracted course of bipolar disorder concomitantly exacerbated glymphatic system dysregulation.
-
Sepsis-associated encephalopathy (SAE) is associated with increased risk of long-term cognitive impairment. SAE is driven, at least in part, by brain endothelial dysfunction in response to systemic cytokine signaling. However, the mechanisms driving SAE and its consequences remain largely unknown. ⋯ We found that the transcriptional response returns to baseline within days post-challenge, but reductions in gene expression regulating protein translation and respiratory electron transport remained. We observed that mice that recovered from the endotoxemic shock showed mild, sex-dependent cognitive impairment, suggesting that the acute brain injury led to sustained effects. A better understanding of the transcriptional and non-transcriptional changes in response to shock is needed in order to prevent and/or revert the devastating consequences of septic shock.
-
This study utilized network pharmacology and docking analyses to explore a groundbreaking therapeutic approach for managing the neuropathic pain and depressive disorder (NP/DD) comorbidity. Schisandra chinensis (SC), a common Chinese medicine, has demonstrated numerous beneficial effects in treating neuropsychological disorders. The main objective of this study was to identify potential bioactive components of SC and investigate their interactions with relevant target genes associated with NP/DD. ⋯ Overall, this study contributes to our understanding of the molecular mechanisms underlying the effects of SC in treating NP/DD. Further investigation is necessary to explore the therapeutic potential of SC as a viable strategy for NP/DD comorbidity. These findings lay a solid foundation for future research endeavors in this field, holding potential implications for the development of novel therapeutic interventions targeting NP/DD.
-
Growing evidence suggests that neuroinflammation is a critical driver of the development, worsening, and cell death observed in acute ischemic stroke (AIS). While prior research has demonstrated that tirofiban enhances functional recovery in AIS patients by suppressing platelet aggregation, its impact and underlying mechanisms in AIS-related neuroinflammation remain elusive. The current study established an AIS mouse model employing photochemical techniques and assessed neurological function and brain infarct size using the modified neurological severity scale (mNSS) and 2,3,5-Triphenyltetrazolium chloride (TTC) staining, respectively. ⋯ Moreover, the protein microarray analysis revealed that tirofiban diminished the expression levels of inflammatory cytokines, such as interleukin-1 (IL-1), IL-6, and tumor necrosis factor-alpha, in the ischemic penumbra. Additionally, immunofluorescence staining showed that tirofiban regulated inflammatory responses by altering the state and phenotype of microglia. In conclusion, this study suggests that tirofiban reduces inflammatory response by regulating microglial state and phenotype and lowering the levels of inflammatory factors, providing neuroprotection in acute ischemic stroke.
-
Potentiation of metabotropic glutamate receptor subtype 5 (mGluR5) function produces antipsychotic-like and pro-cognitive effects in animal models of schizophrenia and can reverse cognitive deficits induced by N-methyl-D-aspartate type glutamate receptor (NMDAR) antagonists. However, it is currently unknown if mGluR5 positive allosteric modulators (PAMs) can modulate NMDAR antagonist-induced alterations in extracellular glutamate levels in regions underlying these cognitive and behavioral effects, such as the medial prefrontal cortex (mPFC). We therefore assessed the ability of the mGluR5 PAM, 3-cyano-N-(1,3-diphenyl-1H-pyrazol-5-yl) benzamide (CDPPB), to reduce elevated extracellular glutamate levels induced by the NMDAR antagonist, dizocilpine (MK-801), in the mPFC. ⋯ This effect was not observed in animals administered CDPPB before MK-801, nor in those administered CDPPB alone, indicating that CDPPB decreased extracellular glutamate release stimulated by MK-801. Results indicate that CDPPB attenuates MK-801 induced elevations in extracellular glutamate in the mPFC. This effect of CDPPB may underlie neurochemical adaptations associated with the pro-cognitive effects of mGluR5 PAMs in rodent models of schizophrenia.