Neuroscience
-
Transient receptor vanillin 1 (TRPV1) is widely expressed in the neural axis and surrounding tissues, and is easily activated by harmful stimuli such as pain and inflammatory responses. Previous studies have shown that activated TRPV1 channels regulate all levels of nervous system activity by improving calcium influx and modulating nervous system excitability. Recent studies have suggested that TRPV1 activation in the peripheral nervous system may induce sleep disorders, while activation in the central nervous system may ameliorate sleep disorders and assist memory consolidation processes. Here, we summarize the risk factors for inducing sleep disorders, the alteration of these risk factors by TRPV1 receptor activation, and the driving effect of TRPV1 receptor activity on memory consolidation.
-
Sleep deprivation is a prevalent issue in contemporary society, with significant ramifications for both physical and mental well-being. Emerging scientific evidence illuminates its intricate interplay with the gut-brain axis, a vital determinant of neurological function. Disruptions in sleep patterns disturb the delicate equilibrium of the gut microbiota, resulting in dysbiosis characterized by alterations in microbial composition and function. ⋯ Moreover, the advent of personalized interventions guided by advanced omics technologies holds considerable potential for tailoring treatments to individualized needs and optimizing therapeutic outcomes. Interdisciplinary collaboration and concerted research efforts are imperative for elucidating the underlying mechanisms linking sleep, gut microbiota, and neurological function. Longitudinal studies, translational research endeavours, and advancements in technology are pivotal for unravelling the complex interplay between these intricate systems.
-
This article discusses the peculiarities of microglia behaviour and their interaction with other cells of the central nervous system (CNS) during neural tissue injury with a focus on spinal cord injury (SCI). Taking into account the plasticity of microglia, the influence of the microenvironment should be taken into account to establish the mechanisms determining the polarization pathways of these cells. ⋯ This review compiles information on changes in microglia activation, migration and phagocytosis, as well as their reciprocal effects on other CNS cells, such as neurons, astrocytes and oligodendrocytes, in the background of SCI. The information contained in this article may be of interest not only to scientists studying traumatic injuries of the central nervous system, but also to specialists in the field of studying and treating neurodegenerative diseases, since the mechanisms occurring in the injured spinal cord may also be characteristic of pathological events in degenerative processes.
-
Parkinson's disease (PD) is a prevalent neurodegenerative disorder caused by degeneration of dopaminergic neurons, originating from the substantia nigra pars compacta, and characterized by motor symptoms such as bradykinesia, muscle rigidity, resting tremor, and postural instability, as well as non-motor symptoms such as anxiety, depression, reduced sense of smell, cognitive impairment, and visual dysfunction. Emerging evidence highlights the retina as a promising site for non-invasive exploration of PD pathology, due to its shared embryonic origin with the central nervous system. ⋯ This review provides a comprehensive synthesis of retinal dysfunctions in PD, focusing on structural and functional changes as potential biomarkers for early diagnosis and clinical assessment. By integrating findings from advanced imaging and electrophysiological studies, this review introduces novel perspectives on the correlation between retinal changes and PD pathophysiology, offering innovative approaches for early detection, disease progression monitoring, and therapeutic stratification.
-
Review
Emerging biophysical techniques for probing synaptic transmission in neurodegenerative disorders.
Plethora of research has shed light on the critical role of synaptic dysfunction in various neurodegenerative disorders (NDDs), including Alzheimer's disease (AD), Parkinson's disease (PD), Amyotrophic lateral sclerosis (ALS), and Huntington's disease (HD). Synapses, the fundamental units for neural communication in the brain, are highly vulnerable to pathological conditions and are central to the progression of neurological diseases. The presynaptic terminal, a key component of synapses responsible for neurotransmitter release and synaptic communication, undergoes structural and functional alterations in these disorders. ⋯ The review articles highlighted provide a comprehensive overview of how synaptic vulnerability and pathology are shared mechanisms across a spectrum of neurological disorders. In major neurodegenerative diseases, synaptic dysfunction is a common thread linking these conditions. The intricate molecular machinery involved in neurotransmitter release, synaptic vesicle dynamics, and presynaptic protein regulation are key areas of focus for understanding synaptic alterations in neurodegenerative diseases.