Neuroscience
-
Recent evidence suggests that alcohol use disorder (AUD) may manifest itself differently in women compared to men. Women experience AUDs on an accelerated timeline and may have certain regional vulnerabilities. In male rats, neuronal cell death and astrocyte reactivity are noted following induction of alcohol dependence in an animal model of an AUD. ⋯ Vimentin immunoreactivity also occurred at earlier and later time points in some cortical and hippocampal regions. These data suggest that both neuronal cell death and astrocyte reactivity could be more widespread in females compared to males. Therefore, this study provides a framework for specific regions and time points which should be examined in future studies of alcohol-induced damage that include female rats.
-
Oxidative stress is heavily involved in several pathological features of Multiple Sclerosis (MS), such as myelin destruction, axonal degeneration, and inflammation. Different therapies have been shown to reduce the oxidative stress that occurs in the animal model of MS, experimental autoimmune encephalomyelitis (EAE). Some of these therapies are transcranial magnetic stimulation (TMS), extra virgin olive oil (EVOO) and S-allyl cysteine (SAC). ⋯ All treatments were maintained for 51 days. TMS, EVOO and SAC, alone or in combination, reduce oxidative stress, increasing antioxidant defenses and also lowering the clinical score. Combination therapies do not appear to be more potent than individual therapies against the oxidative stress of EAE or its clinical symptoms.
-
Interleukin-33 (IL-33) is an inflammatory factor with an extensive range of biological effects and pleiotropic roles in diseases. Evidence suggests that IL-33 and its receptor ST2 play a pivotal role in chronic pain and itch at the level of primary sensory neurons, the spinal cord, and the brain. In this review, we outline an evolving understanding of the roles and mechanisms of IL-33 in chronic pathological pain, including inflammatory, neuropathic, and cancer, and chronic pruritus, such as allergic contact dermatitis, atopic dermatitis, and dry skin. Understanding the key roles of IL-33/ST2 signaling may provide exciting insights into the mechanisms of chronic pain and itch and lead to new clues for therapeutic approaches to the resolution of chronic pain and itch.
-
Accumulation of white adipose tissue (WAT) during obesity is associated with the development of chronic low-grade inflammation, a biological process known as lipoinflammation. Systemic and central lipoinflammation accumulates pro-inflammatory cytokines including IL-6, IL-1β and TNF-α in plasma and also in brain, disrupting neurometabolism and cognitive behavior. ⋯ This review will provide experimental and clinical evidence supporting the contribution of obesity- or overnutrition-related lipoinflammation affecting the mesocorticolimbic reward circuit and enhancing food reward responses. We will also address neuroanatomical targets of inflammatory profiles that modulate food reward responses during obesity and describe potential cellular and molecular mechanisms of overnutrition linked to addiction-like behavior favored by brain lipoinflammation.
-
The ventromedial hypothalamic nucleus (VMN) controls glucose counter-regulation, including pituitary growth hormone (GH) secretion. VMN neurons that express the transcription factor steroidogenic factor-1/NR5A1 (SF-1) participate in glucose homeostasis. Research utilized in vivo gene knockdown tools to determine if VMN growth hormone-releasing hormone (Ghrh) regulates hypoglycemic patterns of glucagon, corticosterone, and GH outflow according to sex. ⋯ Ghrh gene knockdown altered Ghrh/SF-1 neuron estrogen receptor-alpha (ERα) and ER-beta transcripts in hypoglycemic male, not female rats, but up-regulated GPR81 lactate receptor mRNA in both sexes. Outcomes infer that VMNdm Ghrh/SF-1 neurons may be an effector of SF-1 control of counter-regulation, and document Ghrh modulation of hypoglycemic patterns of glucose-regulatory neurotransmitter along with estradiol and lactate receptor gene transcription in these cells. Co-transmission of glucose-inhibitory and -stimulatory neurochemicals of diverse chemical structure, spatial, and temporal profiles may enable VMNdm Ghrh neurons to provide complex dynamic, sex-specific input to the brain glucose-regulatory network.