Neuroscience
-
Selective serotonin reuptake inhibitors (SSRIs) are the first-line pharmacological treatment for a variety of anxiety-, trauma- and stressor-related disorders. Although they are efficacious, therapeutic improvements require several weeks of treatment and are often associated with an initial exacerbation of symptoms. The dorsal raphe nucleus (DR) has been proposed as an important target for the modulation of emotional responses and the therapeutic effects of SSRIs. ⋯ Acute fluoxetine decreased serotonergic activity in the DR, while chronic treatment led to serotonergic activity that was indistinguishable from that of control levels in DRD and DRV subpopulations. Chronic fluoxetine facilitated fear extinction, which was associated with rostral DRD inhibition. These findings provide further evidence that SSRIs can alter aspects of learning and memory processes and are consistent with a role for discrete populations of DR serotonergic neurons in regulating fear- and anxiety-related behaviours.
-
Fragile X syndrome (FXS) is the most common single gene disorder contributing to autism spectrum disorder (ASD). Although significant sex differences are observed in FXS, few studies have focused on the phenotypic characteristics as well as the differences in brain pathological changes and gene expression in FXS by sex. Therefore, we analyzed sex differences in autism-like behavior and dendritic spine development in two-month-old male and female Fmr1 KO and C57 mice and evaluated the mechanisms at transcriptome level. ⋯ Compared to females, male had more severe effects on anxiety, repetitive stereotype-like behaviors, and socializing, with higher dendritic spine density. Furthermore, two male-biased and five female-biased expressed genes were screened based on KEGG pathway enrichment and protein-protein interaction (PPI) analyses. In conclusion, our findings show mutations in the Fmr1 gene lead to aberrant expression of related genes and affect the sex-differentiated behavioral phenotypes of Fmr1 KO mice by affecting brain development and functional architecture, and suggest future studies should focus on including female subjects to comprehensively reflect the differentiation of FXS in both sexes and develop more precise and effective therapeutic strategies.
-
Hypertensive individuals are at a high risk of stroke, and thus, prevention of stroke in hypertensive patients is essential. Metabolomics and lipidomics can be used to identify diagnostic biomarkers and conduct early assessments of stroke risk in hypertensive populations. In this study, serum samples were collected from 30 hypertensive ischemic stroke (IS), 30 matched hypertensive and 30 matched healthy participants. ⋯ The following seven biomarkers distinguished the hypertensive IS from the hypertension group: diglyceride (DG) (20:1/18:2), PE (18:0p/18:2), PE (16:0e/22:5), phosphatidylcholine (40:7), dimethylphosphatidylethanolamine (50:3), DG (18:1/18:2), and 4-hydroxyphenylpyruvic acid. The aforementioned panels had good diagnostic and predictive ability for hypertensive IS. Our study determines the metabolomic and lipidomic profiles of hypertensive IS patients and thereby identifies potential biomarkers of the presence of IS in hypertensive populations.
-
Vitamin D is a steroid hormone, known to be involved in the pathogenesis of various neurodegenerative disorders, including Parkinson's disease (PD). We aimed to clarify the relationship between hypovitaminosis D and the predisposition for PD and its clinical presentation. An additional aim was to examine the specific gene polymorphisms associated with vitamin D level. ⋯ Findings of this study confirm the hypothesis of a significant relationship between hypovitaminosis D and PD. We demonstrated higher prevalence of vitamin D deficiency in PD patients, as well as its predictive potential for the onset and progression of PD.
-
Review
Role of Axon Guidance Molecules in Ascending and Descending paths in Spinal Cord Regeneration.
Axon guidance molecules (AGM) are critical regulators of neural development and play a vital role in guiding axons to their target regions during spinal cord development. The correct wiring of neural circuits depends on these molecules' precise expression and function. Defects in axonal pathfinding, growth cone navigation, axonal branching, and synapse formation have far-reaching implications for neuronal circuit construction and function after CNS traumas, such as spinal cord injury (SCI), which affect the expression or activity of AGM. ⋯ In contrast to the repulsive signals like Slits and Semaphorins, which restrict axonal growth and guide axons away from unsuitable locations, Netrins are appealing guidance cues that encourage axonal growth and guidance. Defects in motor function and sensory processing can result from changes in the expression or activity of Ephrins or their receptors, which play an essential role in axonal guidance and synaptic plasticity in the spinal cord. Herein, we highlighted the expressions, functions, and mechanisms of AGM in ascending and descending spinal cord tracts, which can help us identify novel therapeutic targets to improve axonal regeneration and functional recovery after SCI.