Neuroscience
-
Delayed neuronal damage can be caused or aggravated after cerebral ischemia-reperfusion (I/R) injury. Recent studies have shown that glymphatic system dysfunction after cerebral ischemia-reperfusion injury is involved in ischemic brain edema and neuroinflammation, thereby regulating cerebral ischemia-reperfusion injury. The aim of this study is to investigate the changes of glymphatic system after cerebral ischemia-reperfusion injury and whether limb remote ischemic postconditioning (LRIP) can improve the function of glymphatic system to protect the brain. ⋯ Glymphatic system impaired after cerebral ischemia-reperfusion injury in mice. LRIP may play a neuroprotective role by improving glymphatic function after I/R.
-
Inhibitory neurotransmitters such as gamma-aminobutyric acid (GABA) and glycine are known to be abundant in the substantia gelatinosa (SG) of the trigeminal subnucleus caudalis (Vc). Thus, it has been recognized as an initial synaptic site for regulating orofacial nociceptive stimuli. Honokiol, a principal active ingredient derived from the bark of Magnolia officinalis, has been exploited in traditional remedies with multiple biological effects, including anti-nociception on humans. ⋯ In inflammatory pain model, the increase in frequency of spontaneous firing on SG neurons induced by formalin was significantly inhibited by the application of honokiol. Altogether, these findings indicate that honokiol might directly affect SG neurons of the Vc to facilitate glycinergic and GABAergic neurotransmissions and modulate nociceptive synaptic transmission against pain. Consequently, the inhibitory effect of honokiol in the central nociceptive system contributes to orofacial pain management.
-
Mitochondrial damage is a central mechanism involved in neurological disorders as Alzheimer's, and Parkinson's diseases and amyotrophic lateral sclerosis. Energy production is the most studied mitochondrial function; however, mitochondria are also involved in processes like calcium buffering homeostasis, and cell death control during apoptosis and necrosis. Using transmission electron microscopy, in this in vivo study in male rats, we describe ultrastructural mitochondrial alterations of spinal motor neurons along chronic AMPA-induced excitotoxicity, which has been described as one of the most relevant mechanisms in ALS disease. ⋯ In addition, by combining the TUNEL assay and immunohistochemistry for mitochondrial enzymes, we show evidence of mitochondrial DNA damage. Evidence of mitochondrial alterations during an AMPA-excitotoxic event is relevant because resembles the mitochondrial alterations previously reported in ALS patients and in transgenic familial ALS models, suggesting that a chronic excitotoxic model can be related to sporadic ALS (as has been shown in recent papers), which represent more than the 90% of the ALS cases. Understanding the mechanisms involved in motor neuron degenerative process, such as the ultrastructural mitochondrial changes permits to design strategies for MN-degeneration treatments in ALS.
-
Very recent studies on healthy individuals suggest that changes in the sensibility toward internal bodily sensations across the lifespan affect the ability to mentally represent one's body, in terms of action-oriented and nonaction-oriented body representation (BR). Little is known about the neural correlates of this relation. Here we fill this gap using the neuropsychological model provided by focal brain damage. ⋯ This relation was associated with the disconnection probability of the corticospinal tract, the fronto-insular tract, and the pons. We expand over the previous findings on healthy individuals, supporting the idea that high levels of interoceptive sensibility negatively affect BR. Specific frontal projections and frontal u-shaped tracts may play a pivotal role in such an effect, likely affecting the development of a first-order representation of the self within the brainstem autoregulatory centers and posterior insula and of a second-order representation of the self within the anterior insula and higher-order prefrontal areas.
-
Parkinson's Disease (PD) is a neurodegenerative disease with loss of dopaminergic neurons in the nigrostriatal pathway resulting in basal ganglia (BG) dysfunction. This is largely why much of the preclinical and clinical research has focused on pathophysiological changes in these brain areas in PD. The cerebellum is another motor area of the brain. ⋯ D1R expression was higher in PD animals compared to sham animals in both hemispheres in the purkinje cell layer (PCL) and granule cell layer (GCL) of the cerebellar cortex. Interestingly, D2R expression was higher in PD animals than sham animals mostly in the posterior lobe of the PCL, but no discernible pattern of D2R expression was seen in the GCL between PD and sham animals. To our knowledge, we are the first to report these findings, which may lay the foundation for further interrogation of the role of the cerebellum in PD therapy and/or pathophysiology.