Neuroscience
-
The circadian clock can coordinate, regulate and predict physiology and behavior in response to the standard light-dark (LD: 12 h light and 12 h dark) cycle. If we alter the LD cycle by exposing mice to constant darkness (DD: 00 h light and 24 h dark), it can perturb behavior, the brain, and associated physiological parameters. The length of DD exposure and the sex of experimental animals are crucial variables that could alter the impact of DD on the brain, behavior, and physiology, which have not yet been explored. ⋯ Three weeks of restoration was adequate to establish homeostasis in both sexes. To the best of our knowledge, this study is the first of its kind to look at how DD exposure impacts physiology and behavior as a function of sex- and time. These findings would have translational value and may help in establishing sex-specific interventions for addressing DD-related psychological issues.
-
An absence of reward in chronic stress may impair the reward circuit in the brain, resulting in major depressive disorder (MDD). In a part of chronically stressed individuals, MDD is not present, i.e., there is resilience, implying endogenous anti-depressive mechanisms in the brain. We studied social defeat model mice and analyzed the mRNA maps of the hippocampus from a control group and social defeat (SD)-susceptible and SD-resilient mice using high-throughput sequencing techniques. ⋯ In our study, minocycline inhibited the activation of microglia, thereby improving the depressive state of CSDS mice. In addition, minocycline combined with fluoxetine enhanced the efficacy of fluoxetine. Thus, our results propose the most probable mechanism underlying different responses to CSDS and indicate the potential of a combination of anti-inflammatory drugs and antidepressants in treating refractory depression.
-
Iron supplementation previously demonstrated antidepressant-like effects in post-partum rats. The present study evaluates the possible synergistic antidepressant effect of sub-therapeutic dose of iron co-administered with citalopram or imipramine in female Institute of Cancer Research mice. Depression-like symptoms were induced in the forced swim (FST), tail suspension (TST), and open space swim (OSST) tests while open field test (OFT) was used to assess locomotor activity. ⋯ Our study provides experimental evidence that iron has antidepressant-like effect and sub-therapeutic dose of iron combined with citalopram or imipramine produces more rapid antidepressant-like effect. We further show that iron alone or its combination with citalopram or imipramine attenuates the neuronal loss associated with depressive conditions, increases dendritic spines density and BDNF levels. These finding suggest iron-induced neuronal plasticity in the mice brain.
-
Tauopathies are a group of heterogeneous neurodegenerative conditions characterized by the deposition of abnormal tau protein in the brain. The underlying mechanisms that contribute to the accumulation of tau in these neurodegenerative diseases are multifactorial; nonetheless, there is a growing awareness that dysfunction of endosome-lysosome pathways is a pivotal factor. BCL2 associated athanogene 3 (BAG3) is a multidomain protein that plays a key role in maintaining neuronal proteostasis. ⋯ High throughput screens of BAG3 interactors have identified key players in the vacuolar system; these include clathrin and regulators of small GTPases. These findings suggest that BAG3 is an important regulator of endocytic pathways. In this commentary, we discuss the potential mechanisms by which BAG3 regulates the vacuolar system and tau proteostasis.
-
Primary Tauopathies are a group of diseases defined by the accumulation of Tau, in which the alteration of this protein is the primary driver of the neurodegenerative process. In addition to the classical syndromes (Pick's disease (PiD), progressive supranuclear palsy (PSP), corticobasal degeneration (CBD), and argyrophilic grain disease (AGD)), new entities, like primary age-related Tauopathy (PART), have been recently described. Except for the classical Richardson's syndrome phenotype in PSP, the correlation between the clinical picture of the primary Tauopathies and underlying pathology is poor. ⋯ These findings, pointing towards multifactorial causation, imply the participation of several pathways involving the myelin sheath integrity, the endoplasmic reticulum unfolded protein response, microglia, intracellular vesicle trafficking, or the ubiquitin-proteasome system. Additionally, GWAS show a high degree of genetic overlap across different Tauopathies. This is especially salient between PSP and CBD, but also GWAS studying the recently described PART phenotype shows genetic overlap with genes that promote Tau pathology and with others associated with Alzheimer's disease.