Neuroscience
-
Bipolar disorder may begin as depression or mania, which can affect the treatment and prognosis of bipolar disorder. However, the physiological and pathological differences of pediatric bipolar disorder (PBD) patients with different onset symptoms are not clear. The purpose of this study was to investigate the differences of clinical, cognitive function and intrinsic brain networks in PBD patients with first-episode depression and first-episode mania. ⋯ And significant associations of brain activity with clinical assessments or cognition were found in different patients. In conclusion, we found differential impairments in cognitive and brain network activation in first-episode depressive and first-episode manic PBD patients, and correlations were found between these impairments. These evidences may shed light on the different developmental paths of bipolar disorder.
-
Music is an important tool for the induction and regulation of emotion. Although learning a sequential motor behaviour is essential to normal motor function, to our knowledge, the role of music-induced emotion on motor learning has not been explored. Our experiment aimed to determine whether listening to different emotional music could influence motor sequence learning. ⋯ Declarative learning, verbal recall of the sequence order, was improved under emotional manipulation, but only for fear-condition. Results suggest that music-induced emotion can influence both sub-components of motor learning in a different way. Music-induced pleasure may have improved motor components of sequence learning by means of increased striatal dopamine availability whereas music-induced fear may facilitate the recruitment of attentional circuits, thus acting on declarative knowledge of the sequence order.
-
Ferroptosis plays a key role in the process of spinal cord injury (SCI). As a signal amplifier, connexin 43 (CX43) participates in cell death signal transduction and aggravates the propagation of injury. However, it remains unclear whether CX43 plays a regulatory role in ferroptosis after SCI. ⋯ As a result, the levels of GPX4 and glutathione (GSH) increased, while the levels of the lipid peroxidation products 4-hydroxynonenal (4-HNE) and malondialdehyde (MDA) decreased. Together, inhibition of CX43 could alleviate ferroptosis after SCI. These findings reveal a potential mechanism of the neuroprotective role of CX43 after SCI and provide a new theoretical basis for clinical transformation and application.
-
Over half of all stroke patients present gastrointestinal complications. It has been speculated that there is an intriguing brain-gut connection. However, molecular mechanisms of the connection remain poorly illuminated. ⋯ In conclusion, we have demonstrated that the proteins and metabolites in the colon are significantly changed after ischemic stroke, which provides molecular-level evidence regarding the brain-gut connection. In this light, several common enriched pathways of DEPs may become potential therapeutic targets for stroke upon the brain-gut axis. Notably, we have discovered a promising colon-derived metabolite enterolactone possibly beneficial for tackling stroke.
-
This study aimed to elucidate the mechanism for alteration of m6A RNA modification in cerebral ischemia/reperfusion(I/R) injury and identify novel therapeutic targets. A rat cerebral I/R injury model was established by middle cerebral artery occlusion (MCAO) followed by reperfusion. Changes in m6A RNA modification were evaluated by colorimetric quantification. ⋯ Notably, miR-155 overexpression blunted FTO's protective effect against cerebral I/R injury. We propose that downregulation of FTO expression contributes to increased m6A RNA modification in cerebral I/R injury. FTO overexpression reverses increased total m6A RNA modification and exerts a protective effect against cerebral I/R injury via downregulating m6A modification of pri-miR-155 to inhibit its maturation process.