Neuroscience
-
Peripheral nerve injury (PNI) induces severe functional loss in extremities. Progressive denervation and atrophy occur in the muscles if the nerve repair is delayed for long periods of the time. To overcome these difficulties, detailed mechanisms should be determined for neuromuscular junction (NMJ) degeneration in target muscles after PNI and regeneration after nerve repair. ⋯ In addition, NMJ- and Schwann cell-related molecules showed high expression in the target muscle in the allograft model. These results suggest that Schwann cell migrating from the allograft might play a crucial role in nerve regeneration in the chronic phase after PNI. The relationship between the NMJ and Schwann cells should be further investigated in the target muscle.
-
Syntaxin-binding protein 1 (STXBP1, also known as Munc18-1) regulates exocytosis as a chaperone protein of Syntaxin1A. The haploinsufficiency of STXBP1 causes early infantile-onset developmental and epileptic encephalopathy, known as STXBP1 encephalopathy. Previously, we reported impaired cellular localization of Syntaxin1A in induced pluripotent stem cell-derived neurons from an STXBP1 encephalopathy patient harboring a nonsense mutation. ⋯ These proteins colocalized at the tip of the growth cone and axons in primary cultured hippocampal neurons. Furthermore, RNAi-mediated gene silencing in Neuro2a cells showed that STXBP1 and Myosin Va were required for membrane trafficking of Syntaxin1A. In conclusion, this study proposes a potential role of STXBP1 in the trafficking of the presynaptic protein Syntaxin1A to the plasma membrane in conjunction with Myosin Va.
-
Postoperative cognitive dysfunction (POCD) is a medically induced, rapidly occurring postoperative disease, which is hard to recover and seriously threatens the quality of life, especially for elderly patients, so it is important to identify the risk factors for POCD and apply early intervention to prevent POCD. As we have known, pain can impair cognition, and many surgery patients experience different preoperative pain, but it is still unknown whether these patients are vulnerable for POCD. Here we found that chronic pain (7 days, but not 1 day acute pain) induced by Complete Freund's Adjuvant (CFA) injected in the hind paw of rats could easily induce spatial cognition and memory impairment after being exposed to sevoflurane anesthesia. ⋯ It was detected the existence of neural projection from ventrolateral PAG (vlPAG) to adjacent nucleus Dorsal Raphe (DR), the origin of serotonergic projection for the whole cerebrum, through virus tracing and patch clamp recordings. The Immunofluorescence staining and western blot results showed that Tryptophan Hydroxylase 2 (TPH2) for serotonin synthesis in the DR was increased significantly in the rats treated with CFA for 7 days and sevoflurane for 3 hours, while chemo-genetic inhibition of the vlPAG-DR projection induced obvious spatial learning and memory impairment. Our study suggests that preoperative chronic pain may facilitate cognitive function impairment after receiving anesthesia through the PAG-DR neural circuit, and preventative analgesia should be a considerable measure to reduce the incidence of POCD.
-
Experimental autoimmune encephalomyelitis (EAE) is an animal model of Inflammatory central nervous system (CNS) disease. Dark agouti (DA) rats immunized with full-length myelin oligodendrocyte glycoprotein (MOG1-125) typically develop a relapsing-remitting EAE form characterized by predominant demyelinating involvement of the spinal cord and optic nerve. Visually evoked potentials (VEP) are a useful objective tool to assess the optic nerve function and monitor electrophysiological changes in optic neuritis (ON). ⋯ These findings suggest that VEPs may be a reliable biomarker reflecting the optic nerve involvement in EAE. Moreover, the use of a minimally invasive device enables observation of VEP changes over time in MOG-EAE DA rats. Our findings may have important implications for testing the potential neuroprotective and regenerative effects of new therapies for CNS demyelinating diseases.
-
Understanding the role and mechanism of astrocytes in inflammation and oxidative response is crucial for developing therapeutic strategies to reduce inflammation and oxidative injury in cerebral ischemia-reperfusion injury (CIRI). In this study, we investigated the regulatory effects of phosphoglycerate kinase 1 (PGK1) on inflammation and oxidative response after CIRI in male adult Sprague-Dawley (SD) rats and using primary astrocytes obtained from neonatal SD rats, and explored its related mechanisms. We established a rat model of middle cerebral artery occlusion-reperfusion (MCAO/R) by suture occlusion, and an oxygen-glucose deprivation/reoxygenation model of astrocytes using oxygen-free, glucose-free, and serum-free cultures. ⋯ Further rescue experiments showed that Nrf2 knockdown eliminated the protective effect of CBR-470-1 (a PGK1 inhibitor) on CIRI. Lastly, we confirmed that PGK1 aggravates CIRI by inhibiting the Nrf2/ARE pathway. In conclusion, our findings suggest that inhibiting PGK1 attenuates CIRI by reducing the release of inflammatory and oxidative factors from astrocytes by activating the Nrf2/ARE signaling pathway.