Neuroscience
-
3,4-Methylenedioxymethamphetamine (MDMA or "ecstasy"), is a widely abused, psychoactive recreational drug that is known to induce neurotoxic effects. Human and rat hepatic metabolism of MDMA involves N-demethylation to 3,4-methylenedioxyamphetamine (MDA), which is also a drug of abuse. MDMA and MDA are O-demethylenated to N-methyl-alpha-methyldopamine (N-Me-alpha-MeDA) and alpha-methyldopamine (alpha-MeDA), respectively, which are both catechols that can undergo oxidation to the corresponding ortho-quinones. ⋯ Furthermore, thioether MDMA metabolites time-dependently increased the production of reactive species, concentration-dependently depleted intracellular GSH and increased protein bound quinones. Finally, thioether MDMA metabolites induced neuronal death and oxidative stress was prevented by NAC, an antioxidant and GSH precursor. This study provides new insights into the neurotoxicity mechanisms of thioether MDMA metabolites and highlights their importance in "ecstasy" neurotoxicity.
-
Noradrenergic locus coeruleus (LC) is involved in pain regulation. We studied whether response properties of LC neurons or coeruleospinal antinociception are changed 10-14 days following development of experimental neuropathy. Experiments were performed in spinal nerve-ligated, sham-operated and unoperated male rats under sodium pentobarbital anesthesia. ⋯ Increased responses of LC neurons to noxious somatic stimulation are likely to promote feedback inhibition of neuropathic hypersensitivity, while the enhanced inhibition of the LC from the amygdala is likely to suppress noradrenergic pain inhibition and promote neuropathic pain. It is proposed that the decreased spinal antinociception induced by direct stimulation of the LC may be explained by pronociceptive changes in the non-noradrenergic systems previously described in peripheral neuropathy. Furthermore, we propose the hypothesis that emotions processed by the amygdala enhance pain due to increased inhibition of the LC in peripheral neuropathy.
-
Corticotropin releasing factor (CRF) family peptides play key roles in integrating neural responses to stress. Both major CRF receptors have been pharmacologically identified in the dorsal raphe nucleus (DRN), a stress sensitive and internally heterogeneous nucleus supplying many forebrain regions with serotonergic input. Despite the involvement of chronic stress and serotonergic dysfunction in human mood and anxiety disorders, little is known about the effects of chronic CRF receptor activation on the DRN. ⋯ Changes in 5-HT1A, SERT, and relative Tph2 mRNA abundance were correlated with novel object exploration. These findings suggest chronic intra-DRN administration of CRF agonists decreases exploratory behavior, while producing subregionally limited changes in serotonergic gene expression. These studies may be relevant to mechanisms underlying behavioral changes after chronic stress.
-
Growing evidence supports a role for the immune system in the induction and maintenance of chronic pain. ATP is a key neurotransmitter in this process. Recent studies demonstrate that the glial ATP receptor, P2X7, contributes to the modulation of pathological pain. ⋯ Thus, ATP, acting through the P2X7 receptor, exerts a wide-ranging influence on spinal neuronal activity following a chronic injury. Antagonism of the P2X7 receptor can in turn modulate central sensitization and produce antinociception in animal models of pathological pain. These effects are likely mediated through immuno-neural interactions that affect the release of endogenous cytokines.
-
Sleep fragmentation, a feature of sleep apnea as well as other sleep and medical/psychiatric disorders, is thought to lead to excessive daytime sleepiness. A rodent model of sleep fragmentation was developed (termed sleep interruption, SI), where rats were awakened every 2 min by the movement of an automated treadmill for either 6 or 24 h of exposure. The sleep pattern of rats exposed to 24 h of SI resembled sleep of the apneic patient in the following ways: sleep was fragmented (up to 30 awakening/h), total rapid eye movement (REM) sleep time was greatly reduced, non-rapid eye movement (NREM) sleep episode duration was reduced (from 2 min, 5 s baseline to 58 s during SI), whereas the total amount of NREM sleep time per 24 h approached basal levels. ⋯ BF AD levels were significantly elevated during SI, peaking at 220% of baseline during 30 h of SI exposure. These combined findings imply an elevation of the homeostatic sleep drive following either 6 or 24 h of SI, and BF AD levels appear to correlate more with sleepiness than with the cumulative amount of prior wakefulness, since total NREM sleep time declined only slightly. SI may be partially responsible for the symptom of daytime sleepiness observed in a number of clinical disorders, and this may be mediated by mechanisms involving BF AD.