Neuroscience
-
A long-held assumption states that each dendritic spine in the cerebral cortex forms a synapse, although this issue has not been systematically investigated. We performed complete ultrastructural reconstructions of a large (n=144) population of identified spines in adult mouse neocortex finding that only 3.6% of the spines clearly lacked synapses. Nonsynaptic spines were small and had no clear head, resembling dendritic filopodia, and could represent a source of new synaptic connections in the adult cerebral cortex.
-
Deletion of transient receptor potential vanilloid type 1 (TRPV1)-expressing afferent neurons reduces presynaptic mu opioid receptors but paradoxically potentiates the analgesic efficacy of mu opioid agonists. In this study, we determined if removal of TRPV1-expressing afferent neurons by resiniferatoxin (RTX), an ultrapotent capsaicin analog, influences the development of opioid analgesic tolerance. Morphine tolerance was induced by daily intrathecal injections of 10 microg of morphine for 14 consecutive days or by daily i.p. injections of 10 mg/kg of morphine for 10 days. ⋯ Additionally, there was a large reduction in protein kinase Cgamma-immunoreactive afferent terminals in the spinal dorsal horn of RTX-treated rats. These findings suggest that loss of TRPV1-expressing sensory neurons attenuates the development of morphine analgesic tolerance possibly by reducing mu opioid receptor desensitization through protein kinase Cgamma in the spinal cord. These data also suggest that the function of presynaptic mu opioid receptors on TRPV1-expressing sensory neurons is particularly sensitive to down-regulation by mu opioid agonists during opioid tolerance development.
-
Parkinson's disease (PD) is a neurodegenerative disorder characterized by the loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc). With the exception of a few rare familial forms of the disease, the precise molecular mechanisms underlying PD are unknown. Inflammation is a common finding in the PD brain, but due to the limitation of postmortem analysis its relationship to disease progression cannot be established. ⋯ Using Mcp-1/Ccl2 knockout mice backcrossed onto a C57BL/6J background we found that MPTP-stimulated Mip-1alpha/Ccl3 and Mip-1beta/Ccl4 mRNA expression was significantly lower in the knockout mice; suggesting that Mcp-1/Ccl2 contributes to MPTP-enhanced expression of Mip-1alpha/Ccl3 and Mip-1beta/Ccl4. However, stereological analysis of SNpc neuronal loss in Mcp-1/Ccl2 knockout and wild-type mice showed no differences. These findings suggest that it is the ability of dopaminergic SNpc neurons to survive an inflammatory insult, rather than genetically determined differences in the inflammatory response itself, that underlie the molecular basis of MPTP resistance.
-
Hematopoietic prostaglandin D synthase is a key enzyme in synthesis of prostaglandin D. Hematopoietic prostaglandin D synthase is expressed in microglia of the developing mouse brain. This study determined the serial changes and cellular localization of hematopoietic prostaglandin D synthase, and its role in cerebral ischemia/reperfusion injury using C57BL/6 mice (n=84) and bone marrow chimera mice (n=16). ⋯ Until 72 h postreperfusion, many enhanced green fluorescent protein-positive cells were negative for hematopoietic prostaglandin D synthase, but the number of hematopoietic prostaglandin D synthase-enhanced green fluorescent protein coexpressing cells increased significantly at 5-7 days after reperfusion. Our results indicate that hematopoietic prostaglandin D synthase is mainly produced by endogenous microglia until 72 h after reperfusion, but at 7 days after reperfusion, it is also produced by migrating bone marrow/blood-derived macrophages in the ischemic brain tissue. We speculate that hematopoietic prostaglandin D synthase in the brain has different functions during early and late phases of ischemia.
-
We characterized bradykinin (BK)-induced changes in the intracellular Ca(2+) concentration ([Ca(2+)]i) and membrane potential in cultured rat myenteric neurons using ratiometric Ca(2+) imaging with fura-2 and the whole-cell patch-clamp technique, respectively. BK evoked a dose-dependent increase of [Ca(2+)]i that was abolished by HOE 140, a B2 receptor antagonist but not by [Lys-des-Arg(9)]-BK, a B1 receptor antagonist. [Lys-des-Arg(9)]-HOE140, a B1 receptor agonist, failed to cause a [Ca(2+)]i response. Double staining with antibodies against the B2 receptor together with PGP9.5 or S100 indicated that B2 receptors were expressed in neurons and glial cells. ⋯ BK evoked a slow and sustained depolarization in myenteric neurons, which was sensitive to indomethacin. These results indicated that BK caused a [Ca(2+)]i increase and depolarization in rat myenteric neurons through the activation of B2 receptors, which was partly associated with PGE(2) released from glial cells in response to BK. It is suggested that a neuron-glial interaction plays an important role in the effect of BK in the rat myenteric plexus.