Neuroscience
-
Cocaine-associated cues acquire incentive motivational effects that manifest as craving in humans and cocaine-seeking behavior in rats. We have reported an increase in neuronal activation in rats, measured by Fos protein expression, in various limbic and cortical regions following exposure to cocaine-associated cues. This study examined whether the conditioned neuronal activation involves glutamate AMPA receptors by measuring coexpression of Fos and AMPA glutamate receptor subunits (GluR1, GluR2/3, or GluR4). ⋯ The No Extinction group exhibited increases in cocaine-seeking behavior and Fos expression in limbic and cortical regions relative to the Extinction group. A large number of Fos immunoreactive cells coexpressed GluR1, GluR2/3, and GluR4, suggesting that an action of glutamate at AMPA receptors may in part drive cue-elicited Fos expression. Importantly, there was an increase in the percentage of cells colabeled with Fos and GluR1 in the anterior cingulate and nucleus accumbens shell and cells colabeled with Fos and GluR4 in the infralimbic cortex, suggesting that within these regions, a greater, and perhaps even different, population of AMPA receptor subunit-expressing neurons is activated in rats engaged in cocaine-seeking behavior.
-
Excessive glutamate receptor stimulation can produce rapid disruption of dendritic morphology, including dendritic beading. We recently showed that transient N-methyl-d-aspartic acid (NMDA) exposure resulted in irreversible loss of synaptic function and loss of microtubule associated protein 2 (MAP2) from apical dendrites. The present study examined the initiation and progression of dendritic injury in mouse hippocampal slices following this excitotoxic stimulus. ⋯ Under these conditions, beading appeared predominant in interneurons, as assessed from experiments with GAD67-GFP (Deltaneo) mice. Ca2+-removal was associated with significantly better preservation of dendritic structure (MAP2) following NMDA exposure, and other ionic fluxes (sensitive to Gd3+ and spermine) may contribute to residual damage occurring in Ca2+-free conditions. These results suggest that irregularly shaped dendritic swelling is a Ca2+-dependent degenerative event that may be quite different from Ca2+-independent dendritic beading, and can be a predominant type of injury in CA1 pyramidal neurons in slices.
-
Small-fiber painful peripheral neuropathy, a complication of chronic ethanol ingestion, is more severe in women. In the present study, we have replicated this clinical finding in the rat and evaluated for a role of estrogen and second messenger signaling pathways. The alcohol diet (6.5% ethanol volume:volume in Lieber-DeCarli formula) induced hyperalgesia with more rapid onset and severity in females. ⋯ Inhibitors of protein kinase Cepsilon (PKCepsilon-I) and extracellular-signal related kinase (ERK) 1/2 (2'-amino-3'-methoxyflavone (PD98059) and 1,4-diamino-2, 3-dicyano-1, 4-bis (2-aminophenylthio) butadiene (U0126)) attenuated hyperalgesia in males and females, however the degree of attenuation produced by PKCepsilon-I was much greater in females. In conclusion, estrogen plays an important role in the expression of pain associated with alcohol neuropathy in the female rat. In contrast to inflammatory hyperalgesia, in which only the contribution of PKCepsilon signaling is sexually dimorphic, in alcohol neuropathy PKA as well as PKCepsilon signaling is highly sexually dimorphic.
-
The skewed amplitude distribution of spontaneous excitatory junction potentials (sEJPs) in the mouse vas deferens and other electrically-coupled smooth muscle syncytia has been attributed to electrically-attenuated depolarizations resulting from the spontaneous release of quantized packets of ATP acting on remote smooth muscle cells (SMCs). However, in the present investigation surface SMCs of the mouse isolated vas deferens were poorly electrically coupled, with input resistances (176+/-18 MOmega, range: 141-221 MOmega, n=4) similar to those of dissociated cells. Furthermore, the amplitude of evoked EJPs was more variable in surface compared with deeper SMCs (F test, F=17.4, P<0.0001). ⋯ The temporal correlation between sEJPs of widely ranging amplitude with NCTs in the impaled SMC demonstrates that all sEJPs could arise from neurotransmitter action on the impaled cell and that the skewed distribution of sEJPs can be explained by the variable effect of packets of ATP on a single SMC. The amplitude correlation of sEJPs and NCTs argues against the attenuation of electrical signal amplitude along the length of a single SMC. The skewed sEJP amplitude distribution arising from neurotransmitter release on single SMCs is consistent with a broad neurotransmitter packet size distribution at sympathetic neuroeffector junctions.
-
Neuropathic pain is typified by injuries to the peripheral and central nervous system and derives from such causes as cancer, diabetes, multiple sclerosis, post-herpetic neuralgia, physical trauma or surgery, and many others. Patients suffering neuropathic pain do not respond to conventional treatment with non-steroidal anti-inflammatory drugs and show a reduced sensitivity to opiates often associated with serious side effects. Recently, it has been demonstrated that botulinum neurotoxin serotype-A (BoNT/A) is able to induce analgesia in inflammatory pain conditions. ⋯ Remarkably, a single non-toxic dose of BoNT/A was sufficient to induce anti-allodynic effects, which lasted for at least 3 weeks. This result is particularly relevant since neuropathic pain is poorly treated by current drug therapies. This communication enlarges our knowledge on potentially new medical uses of BoNT/A in efforts to ameliorate human health conditions, with very important implications in the development of new pharmacotherapeutic approaches against neuropathic pain.