Neuroscience
-
Members of various transport protein families including ATP-binding cassette transporters and solute carriers were shown to be expressed in brain capillaries, choroid plexus, astrocytes or neurons, controlling drug and metabolite distribution to and from the brain. However, data are currently very limited on how the expression of these transport systems is affected by damage to the brain such as stroke. Therefore we studied the expression of four selected transporters, P-glycoprotein (Mdr1a/b; Abcb1a/b), Mrp5 (Abcc5), Bcrp (Abcg2), and Oatp2 (Slc21a5) in a rat model for stroke. ⋯ For Mrp5, an up-regulation was observed in neurons in the periinfarcted region (day 14). In conclusion, after stroke the transport proteins were up-regulated with a maximum at day 14, a time point that coincides with behavioral recuperation. The study further suggests Bcrp as a pronounced marker for the regenerative process and a possible functional role of Mrp5 in surviving neurons.
-
Comparative Study
Ectopic expression of doublecortin protects adult rat progenitor cells and human glioma cells from severe oxygen and glucose deprivation.
Doublecortin (DCX) is a microtubule-associated protein expressed in migrating neuroblasts. DCX expression is increased in subventricular zone (SVZ) cells migrating to the boundary of an ischemic lesion after induction of middle cerebral artery occlusion (MCAO) in adult rats and mice. We tested the hypothesis that DCX, in addition to being a marker of migrating neuroblasts, serves to protect neuroblasts from conditions of stress, such as oxygen and glucose deprivation (OGD). ⋯ In NIH3T3 cells, DCX overexpression had no effect on cell survival against OGD, and indicating that the protective effects of DCX was restricted to brain cells e.g. SVZ and U-87 cells. Our data suggest a novel and an important role for DCX as a protective agent for migrating neuroblasts and tumor cells.
-
Comparative Study
Robust increase of cutaneous sensitivity, cytokine production and sympathetic sprouting in rats with localized inflammatory irritation of the spinal ganglia.
We investigated the role and mechanisms of inflammatory responses within the dorsal root ganglion (DRG) in the development of chemogenic pathological pain. DRG inflammation was induced by a single deposit of the immune activator zymosan in incomplete Freund's adjuvant in the epidural space near the L5 DRG via a small hole drilled through the transverse process. After a single zymosan injection, rats developed bilateral mechanical hyperalgesia and allodynia which began by day 1 after surgery, peaked at days 3-7, and lasted up to 28 days. ⋯ Changes in cytokines and spontaneous activity correlated with the time course of pain behaviors, especially light stroke-evoked tactile allodynia. Finally, local inflammation induced extensive sprouting of sympathetic fibers, extending from vascular processes within the inflamed DRG. These results demonstrate the feasibility of inducing chronic localized inflammatory responses in the DRG in the absence of traumatic nerve damage, and highlight the possible contribution of several inflammatory cytokines/chemokines to the generation of spontaneous activity and development and persistence of chemogenic pathologic pain.
-
Comparative Study
Pain sensitivity in mice lacking the Ca(v)2.1alpha1 subunit of P/Q-type Ca2+ channels.
The role of voltage-gated Ca(2+) (Ca(V)) channels in pain mechanisms has been the object of intense investigation using pharmacological approaches and, more recently, using mutant mouse models lacking the Ca(V)alpha(l) pore-forming subunit of N-, R- and T-type channels. The role of P/Q-type channels in nociception and pain transmission has been investigated by pharmacological approaches but remains to be fully elucidated. To address this issue, we have analyzed pain-related behavioral responses of null mutant mice for the Ca(V)2.1alpha(1) subunit of P/Q-type channels. ⋯ Adult heterozygous Ca(V)2.1alpha(1)+/- mice did not show motor deficits in the rotarod and activity cage tests and did not show alterations in pain responses in the tail-flick test and the acetic acid writhing test. Strikingly, they showed a reduced licking response during the second phase of formalin-induced inflammatory pain and a reduced mechanical allodynia in the chronic constriction injury model of neuropathic pain. Our findings show that P/Q-type channels play an antinociceptive role in sensitivity to non-injurious noxious thermal stimuli and a pronociceptive role in inflammatory and neuropathic pain states, pointing to an important role of Ca(V)2.1 channels in central sensitization.
-
Comparative Study
Transition of mouse de novo methyltransferases expression from Dnmt3b to Dnmt3a during neural progenitor cell development.
Dnmt3a and Dnmt3b, which are known as functional de novo methyltransferases, are responsible for creating genomic methylation patterns during mammalian development. Recently, we have shown that specific expression of Dnmt3b in epiblast, embryonic ectoderm, hematopoietic progenitor cells and spermatogonia cells is followed by Dnmt3a expression (Watanabe D, Suetake I, Tada T, Tajima S (2002) Stage- and cell-specific expression of Dnmt3a and Dnmt3b during embryogenesis. Mech Dev 118:187-190; Watanabe D, Suetake I, Tajima S, Hanaoka K (2004) Expression of Dnmt3b in mouse hematopoietic progenitor cells and spermatogonia at specific stages. ⋯ Dnmt3a is expressed in postmitotic young neurons following the Dnmt3b expression. Dnmt3a may be required for the establishment of tissue-specific methylation patterns of the genome. The coordinated expression of de novo methyltransferases from Dnmt3b to Dnmt3a suggests conserved mechanisms of de novo methylation of the genome and different functions for Dnmt3b and Dnmt3a during progenitor cell development.