Neuroscience
-
Comparative Study
Abnormal proprioceptive-motor integration contributes to hypometric postural responses of subjects with Parkinson's disease.
Subjects with Parkinson's disease exhibit abnormally short compensatory steps in response to external postural perturbations. We examined whether: (1) Parkinson's disease subjects exhibit short compensatory steps due to abnormal central proprioceptive-motor integration, (2) this proprioceptive-motor deficit can be overcome by visual-motor neural circuits using visual targets, (3) the proprioceptive-motor deficit relates to the severity of Parkinson's disease, and (4) the dysfunction of central dopaminergic circuits contributes to the Parkinson's disease subjects' proprioceptive-motor deficit. Ten Parkinson's disease subjects and 10 matched control subjects performed compensatory steps in response to backward surface translations in five conditions: with eyes closed, with eyes open, to a remembered visual target, to a target without seeing their legs, and to a target while seeing their legs. ⋯ Thus, Parkinson's disease subjects exhibited short compensatory steps due to abnormal proprioceptive-motor integration and used visual input to take longer compensatory steps when a target was provided. In severe Parkinson's disease subjects, however, visual input does not fully compensate because, even with a target and unobstructed vision, they still exhibited poor step accuracy. Medication did not consistently improve the length and accuracy of the Parkinson's disease subjects' compensatory steps, suggesting that degeneration of dopamine circuits within the basal ganglia is not responsible for the proprioceptive-motor deficit that degrades compensatory steps in Parkinson's disease subjects.
-
Comparative Study
Oxytocin receptors in the nucleus accumbens facilitate "spontaneous" maternal behavior in adult female prairie voles.
Oxytocin and the nucleus accumbens have been extensively implicated in the regulation of maternal behavior, and the processing of pup-related stimuli relevant for this behavior. Oxytocin receptor density in the nucleus accumbens is highly variable in virgin female prairie voles, as is their behavioral response to pups, ranging from neglecting and infanticidal to full maternal behavior. We hypothesized that oxytocin receptor in the nucleus accumbens facilitates the expression of "spontaneous" maternal behavior in prairie voles. ⋯ Nucleus accumbens oxytocin receptor antagonist-infused females recovered the next day and were not different from controls. Animals infused with CSF or oxytocin receptor antagonist into the caudate putamen did not differ (four/10, four/10). This is the first study to show that the nucleus accumbens is involved in the regulation of "spontaneous" maternal behavior and that oxytocin receptor in this brain region facilitates maternal responses.
-
Comparative Study
Differences in mitochondrial movement and morphology in young and mature primary cortical neurons in culture.
Mitochondria have many roles critical to the function of neurons including the generation of ATP and regulation of intracellular Ca2+. Mitochondrial movement is highly dynamic in neurons and is thought to direct mitochondria to specific cellular regions of increased need and to transport damaged or old mitochondria to autophagosomes. Morphology also varies between individual mitochondria and is modulated by fusion and fission proteins such as mitofusin-1 and dynamin-related protein-1, respectively. ⋯ However, the number of mitochondria per mum of neuronal process, mitochondrial membrane potential and the amount of basally sequestered mitochondrial Ca2+ were similar. Our results suggest that while mitochondria in young neurons are functionally similar to mature neurons, their enhanced motility may permit faster energy dispersal for cellular demands, such as synaptogenesis. As cells mature, mitochondria in the processes may then elongate and reduce their motility for long-term support of synaptic structures.
-
Comparative Study
Interleukin-1 beta contributes to the upregulation of kappa opioid receptor mrna in dorsal root ganglia in response to peripheral inflammation.
During local painful inflammation, axonal transport of opioid receptors from dorsal root ganglia toward the periphery is increased, associated with a higher receptor density and enhanced efficacy of opioid analgesics at the injured site. To examine whether this increase is related to transcription, mRNA of the kappa opioid receptor in lumbar dorsal root ganglia was quantified by real time light cycler polymerase chain reaction. In dorsal root ganglia of naive rats, kappa opioid receptor mRNA expression was three-fold higher than previously shown for delta opioid receptor and two times lower than mu opioid receptor mRNA, respectively. ⋯ In conclusion, kappa opioid receptor mRNA and protein in dorsal root ganglia are upregulated in response to peripheral inflammation. This effect can be mimicked by a single local injection of interleukin-1 beta, and Freund's complete adjuvant-induced upregulation in kappa opioid receptor mRNA and protein can be prevented by treatment with interleukin-1 receptor antagonist. These data suggest that the peripheral production of the proinflammatory cytokine interleukin-1 beta is a specific inducer of kappa opioid receptor expression in the dorsal root ganglia.
-
Comparative Study
Dendritic morphogenesis of cerebellar Purkinje cells through extension and retraction revealed by long-term tracking of living cells in vitro.
Cerebellar Purkinje cells have the most elaborate dendritic trees among the neurons in the CNS. To investigate the dynamic aspects of dendritic morphogenesis of Purkinje cells, we performed a long-term analysis of living cells in cerebellar cell cultures derived from glutamate decarboxylase 67-green fluorescent protein mice. Most Purkinje cells had several primary dendrites during the 25-day culture period. ⋯ Furthermore, treatment with an inhibitor of calcium/calmodulin-dependent protein kinase II reduced the number of primary dendrites specifically during 5-15 days in vitro, the culture period when the extension and retraction of primary dendrites occurred actively. Blockade of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid/kainate-type glutamate receptors also reduced the number of primary dendrites during the same culture period, while inhibition of glutamate transporters increased the number. These findings suggest that the final morphology of Purkinje cells is achieved not only through extension, but also through retraction of their dendrites, and that calcium/calmodulin-dependent protein kinase II and neuronal activity are involved in this dendritic morphogenesis.