Neuroscience
-
The effect of RPR 100893, a selective and specific neurokinin-1 antagonist, or its enantiomer RPR 103253 was examined on c-fos antigen expression in brain stem and upper cervical cord 2 h after intracisternal capsaicin injection (30.5 micrograms/ml) in pentobarbital-anesthetized Hartley guinea-pigs. Positive cells were counted at three levels corresponding to obex, -2.25 mm and -6.75 mm in 18 sections (50 microns). Immunoreactivity was strongly expressed within laminae I and IIo of trigeminal nucleus caudalis, area postrema and the leptomeninges. ⋯ These results indicate that (i) the instillation of capsaicin into the subarachnoid space is an effective stimulus for the induction of c-fos antigen within trigeminal nucleus caudalis, presumably through activation of trigeminovascular afferents, and (ii) the neurokinin-1 antagonist RPR 100893 reduces the number of positive cells selectively within this nucleus. The findings are significant because drugs which alleviate vascular headaches decrease the number of c-fos-positive cells within trigeminal nucleus caudalis following noxious meningeal stimulation. Hence, strategies aimed at blocking the neurokinin-1 receptor may be useful for treating migraine and cluster headache.
-
High-affinity nicotine binding, considered to primarily reflect the presence of CNS alpha 4 beta 2 nicotinic receptor subunits, was examined autoradiographically in brain regions most severely affected by Alzheimer and Parkinson types of pathology. In the midbrain, the high density of binding associated with the pars compacta of the substantia nigra was extensively reduced (65-75%, particularly in the lateral portion) in both Lewy body dementia and Parkinson's disease. Since loss of dopaminergic neurons in Lewy body dementia was only moderate (40%), loss or down-regulation of the nicotinic receptor may precede degeneration of dopaminergic neurons in this region. ⋯ In temporal neocortex there were reductions in Alzheimer's disease throughout the cortical layers but in Lewy body dementia only in lower layers, in which Lewy bodies are concentrated. Abnormalities of the nicotinic receptor in the diseases examined appear to be closely associated with primary histopathological changes: dopaminergic cell loss in Parkinson's disease and Lewy body dementia, amyloid plaques and tangles in subicular and entorhinal areas in Alzheimer's disease. Loss or down-regulation of the receptor may precede neurodegeneration.
-
Recent studies have shown the existence of a specific antagonistic interaction between adenosine A2a receptors and dopamine D2 receptors in the brain. This A2a-D2 interaction seems to be essential for the behavioural effects of adenosine agonists and antagonists, like caffeine. In the present study quantitative receptor autoradiography and brain microdialysis were combined to demonstrate a powerful antagonistic A2a-D2 interaction in the ventral striopallidal system. ⋯ The infusion of (2-p-carboxyethyl)phenylamino-5'-N-carboxamidoadenosine in the nucleus accumbens induced the same postsynaptic changes as the D2 antagonist raclopride, i.e. an increase in pallidal GABA extracellular levels, without changing those levels in the nucleus accumbens. Furthermore, the coinfusion in the nucleus accumbens of low concentrations of (2-p-carboxyethyl) phenylamino-5'-N-carboxamido-adenosine and raclopride, which were ineffective when administered alone, induced a significant increase in pallidal gamma-aminobutyric acids extracellular levels. These results suggest that A2a agonists, alone or in combination with D2 antagonists, could be advantageous antischizophrenic drugs, as blockage of D2 receptors in the ventral striopallidal system appears to be associated with the antipsychotic activity of neuroleptics but not with their extrapyramidal motor-side effects.
-
During brain development, the microtubule-associated protein tau presents a transient state of high phosphorylation. We have investigated the developmental distribution of the phosphorylated fetal-type tau in the developing rat cortex and in cultures of embryonic cortical neurons, using antibodies which react with tau in a phosphorylation-dependent manner. The phosphorylated fetal-type tau was present in the developing cortex at 20 days but not at 18 days of embryonic life and was not detected before four to five days in neuronal culture. ⋯ The timing of appearance of phosphorylated tau in the cortex, by comparison with the expression of other developmental markers, indicates that phosphorylated tau is present at a high level only during the period of intense neuritic outgrowth and that it disappears during the period of neurite stabilization and synaptogenesis, concomitantly to the expression of adult tau isoforms. In control cultures and in cultures treated with colchicine, the phosphorylated tau was not associated to cold-stable and to colchicine-resistant microtubules. These in vivo results suggest that the high expression of phosphorylated tau species is correlated with the presence of a dynamic microtubule network during a period of high plasticity in the developing brain.
-
We have recently reported the cloning of a mouse kappa opioid receptor cDNA. Following transfection of the kappa receptor cDNA into COS-1 cells, a receptor is expressed with the pharmacological specificity of a kappa opioid receptor. To further analyse its functional properties, we have stably expressed the kappa opioid receptor in undifferentiated PC-12 cells, a pheochromocytoma clonal cell line, which do not endogenously express this receptor. ⋯ Kappa opioid receptors are thought to be important in pain pathways, learning and memory deficits, and seizure activity. A major physiological action of the dynorphins, the endogenous ligands of the kappa receptor, is thought to be inhibition of neurotransmitter release at presynaptic terminals. N-type calcium channels may be important in neurotransmitter release.(ABSTRACT TRUNCATED AT 250 WORDS)