Neuroscience
-
Comparative Study
Transgenic mice over-expressing substance P exhibit allodynia and hyperalgesia which are reversed by substance P and N-methyl-D-aspartate receptor antagonists.
A transgenic mouse has been developed which, during development, over-expresses nerve growth factor under the control of a myelin basic protein promoter. These animals display an ectopic network of substance P-containing sensory fibers in the white matter of the spinal cord. To study the functional significance of this model to nociception, these mice were studied in a test measuring the latency to tail withdrawal from a noxious radiant heat stimulus. ⋯ The neurokinin-1 receptor antagonist CP-96,345, but not the inactive stereoisomer CP-96,344, administered subcutaneously 30 min before the 450 g stimulus, blocked the stimulation-induced allodynia in transgenic mice, and revealed a transient antinociception in transgenic and control mice. Ketamine, an N-methyl-D-aspartate receptor antagonist, given intraperitoneally 10 min before 450 g stimulation, blocked the allodynia in transgenic mice. These results indicate that these transgenic mice display hyperalgesia and allodynia, and that these nociceptive responses are reversed by substance P and N-methyl-D-aspartate receptor antagonists.
-
From a classical viewpoint, tolerance to analgesic effects of opiates refers to the decreased effectiveness of a given opiate following its repeated use. Despite much research, it has not been conclusively demonstrated in vivo that functional changes observed at the opioid receptor level in the responsiveness to opiates account for development of tolerance. An alternative hypothesis is that opioid receptors remain operative following repeated opiate administration but that opioid receptor activation rapidly induces a prolonged increase in pain sensitivity which opposes the predominant opiate analgesic effect following repeated opiate administration. ⋯ Herein we report that repeated once-daily heroin injections induced a gradual lowering of the nociceptive threshold which progressively masked a sustained heroin analgesic functional effect. MK-801 prevented such opiate-induced allodynia and thereby prevented development of an apparent decrease in the effectiveness of heroin. These results indicate that intermittent heroin administration induced a persistent increase in the basal pain sensitivity which, if not taken into account gives the impression of less analgesia, i.e. apparent tolerance.
-
Melanocortin peptides (alpha-melanocyte-stimulating hormone, adrenocorticotropin and fragments thereof) have been shown to have numerous effects on the central nervous system, including recovery from nerve injury and retention of learned behaviour, but the mechanism of action of these peptides is unknown. A family of five melanocortin receptors have recently been discovered, two of which (melanocortin-3 and melanocortin-4 receptors) have been mapped in the rat brain. We have tested the hypothesis that the expression of one or more of the messenger RNAs for three melanocortin receptors (melanocortin-3, melanocortin-4 and melanocortin-5 receptors) would be altered in rat brain following unilateral transient hypoxic-ischaemic brain injury. ⋯ In a small group of animals, this induction was not blocked by treatment with the anticonvulsant, carbamazepine. Expression of melanocortin-3 receptor messenger RNA in the brain was not altered in this hypoxic-ischaemic injury model and melanocortin-5 receptor messenger RNA was not detected in either control or hypoxic-ischaemic injured rat brains. We hypothesize that the up-regulation of melanocortin-4 receptor messenger RNA expression in the contralateral striatum may be involved in transfer of function to the uninjured hemisphere following unilateral brain injury.
-
The hippocampus has long been known to be important for memory function. However, the involvement of hippocampal dopamine systems with memory has received little attention. In the current study, dopamine D1 and D2 hippocampal receptor system involvement with memory was assessed in female Sprague-Dawley rats by local infusion of D1 and D2 agonists and antagonists into the ventral hippocampus. ⋯ This study provides clear evidence that hippocampal D2 activity is positively related to working memory performance, while evidence for D1 systems is less compelling. Dopamine D2 receptors in the ventral hippocampus were shown to have important influences on spatial working memory. In a consistent pattern of effects ventral hippocampal infusion of the D2 agonist quinpirole improved working memory performance in the radial-arm maze, while ventral hippocampal infusion of the D2 antagonist raclopride impaired performance.
-
The neuromodulatory actions of dopamine in the striatum and nucleus accumbens are likely to depend on the distribution of dopamine receptors on individual postsynaptic cells. To address this, we have visualized D1- and D2-like receptors on living medium-spiny GABAergic neurons in cultures from the striatum and nucleus accumbens using receptor antagonist fluoroprobes. We labeled D1-like receptors with rhodamine-SCH23390, D2-like receptors with rhodamine-N-(p-aminophenethyl)spiperone and synaptic sites with K+-stimulated uptake of the activity-dependent endocytic tracer FM-143. ⋯ The extensive presence of D1- and D2-like receptors on presynaptic varicosities of medium-spiny neurons suggests that the receptors are likely to play an important and interacting role in the presynaptic modulation of inhibitory synaptic transmission in the striatum and nucleus accumbens. The significant overlap in labeling suggests that D1-D2 interactions, which occur at the level of individual postsynaptic cells, the circuit level and the systems level, may also be mediated at the presynaptic level. Finally, the ability to visualize dopamine, as well as GABA(A), receptors on the individual synapses of living neurons now makes possible physiological studies of individual mesolimbic system synapses with known receptor expression.