Neuroscience
-
Inflammation and hyperalgesia induce a dramatic up-regulation of opioid messenger RNA and peptide levels in nociceptive neurons of the spinal dorsal horn. Descending axons modulate nociceptive transmission at the spinal level during inflammatory pain, and may play a role in the development of persistent pain. The role of descending bulbospinal pathways in opioid-containing nociceptive neurons was examined. ⋯ These data suggest that increased dynorphin messenger RNA ipsilateral to inflammation, in rats without descending axons, was due to increased expression within the same cells and not to recruitment of additional dynorphin-expressing cells. This reflects a greater dynamic response of nociceptive neurons to noxious stimuli in the absence of descending modulation. Therefore, the net effect of descending afferents on spinal nociceptive circuits may be to reduce the response of opioid-containing neurons to noxious stimulation from the periphery.
-
Inflammatory processes may play a critical role in the degeneration of basal forebrain cholinergic cells that underlies some of the cognitive impairments associated with Alzheimer's disease. In the present study, the proinflammagen lipopolysaccharide, from the cell wall of Gram-negative bacteria, was used to produce inflammation within the basal forebrain of rats. The effects of acute, high-dose injections of lipopolysaccharide (2, 20 or 40 microg) upon basal forebrain chemistry and neuronal integrity were compared with the effects of chronic, low-dose lipopolysaccharide infusions (0.18, 0.25, 1.8 or 5.0 microg/h) for either 14, 37, 74 or 112 days. ⋯ Regional levels of five different neuropeptides were unchanged by acute, high-dose lipopolysaccharide injections. Chronic lipopolysaccharide infusions produced (i) a time-dependent, but not dose-dependent, decrease in cortical choline acetyltransferase activity that paralleled a decline in the number of choline acetyltransferase- and p75-immunoreactive cells within the basal forebrain, and (ii) a dense distribution of reactive astrocytes and microglia within the basal forebrain. Chronic neuroinflammation might underlie the genesis of some neuropathological changes associated with normal ageing or Alzheimer's disease.
-
Wobbler mice display forelimb weakness, altered paw positioning, reduced running speed, muscle atrophy and motor neuron loss; co-treatment with glycosaminoglycans and insulin-like growth factor-I counteracts the progression of the disease. Reportedly, treatment with glycosaminoglycans or insulin-like growth factor-I slows the early stages of progressive forelimb dysfunction in wobbler mice. Our aim was to study whether the combination of these two drugs would result in greater neuroprotective effects. ⋯ Moreover, the mouse phenotype itself was strikingly improved. The effect of the combination treatment was significantly higher than that of the single drugs, even at a dosage as high as 1 mg/kg insulin-like growth factor-I. The ability of the insulin-like growth factor-I/glycosaminoglycans pharmacological cocktail to arrest the progression of motor neuron disease in wobbler mice and the safety of the low dose of insulin-like growth factor-I used hold promise that this combination might represent a novel approach for the treatment of motor neuron disease and peripheral neuropathies.
-
The neurokinin-1 receptor and its tachykinin neuropeptide ligand substance P are associated with the mediation of nociception. Substance P released from primary afferent sensory neurons activates neurokinin receptors on both central and peripheral targets that mediate specific aspects of central sensitization and inflammatory function; however, an autoreceptor function for the neurokinin-1 receptor remains highly controversial. Activation of the neurokinin-1 receptor by substance P during chronic nociception increases neurokinin-1 receptor gene expression in the spinal cord. ⋯ These results indicate that the plasticity of neurokinin-1 receptor gene expression in non-neuronal peripheral cells could regulate sensitivity to substance P in a manner similar to that in the spinal cord dorsal horn. Altered neurokinin-1 receptor gene expression provides a useful marker of long-term nociceptive activation and may mediate peripheral mechanisms of hyperalgesia and cellular sensitization during inflammation. Importantly, inflammation does not induce a phenotypic change in afferent sensory neurons providing neurokinin receptor targets for the direct sensitization of these neurons by substance P.
-
Mitogen-activated protein kinase signal transduction pathway involved in the regulation of proliferation and differentiation of various mammalian cells consists of a sequential activation of three protein kinases, Raf, mitogen-activated protein kinase kinase, and mitogen-activated protein kinase. These kinases are highly expressed in brain and play an important role in neuronal signalling. In this study, to further characterize mitogen-activated protein kinase signalling pathway in brain, we have elucidated the topography and subcellular distribution of mitogen-activated protein kinase kinasel in adult rat brain and differentiating PC12 cells. ⋯ From bovine brain extract, mitogen-activated protein kinase kinasel co-purifies with microtubules. In vitro kinase assay detected mitogen-activated protein kinase kinase1 activity within purified microtubules. These observations indicate that mitogen-activated protein kinase kinase1 is associated with microtubules within some specialized compartments of the brain and microtubule-associated mitogen-activated protein kinase kinase1 is catalytically active.