Neuroscience
-
When adult dorsal root ganglion cells are dissociated and maintained in vitro, both the small dark and the large light neurons show increases in the growth-associated protein GAP-43, a membrane phosphoprotein associated with neuronal development and plasticity. Immunoreactivity for GAP-43 appears in the cytoplasm of the cell bodies as early as 3.5 h post axotomy and is present in neurites and growth cones as soon as they develop. At early stages of culture (4 h to eight days) satellite/Schwann cells are also immunoreactive for GAP-43. ⋯ Axotomy of primary sensory neurons or the interruption of axon transport in the periphery therefore acts to trigger GAP-43 production in the cell body. The GAP-43 is transported to both the peripheral and the central terminals of the afferents. In the CNS the elevated GAP-43 levels may contribute to an inappropriate synaptic reorganization of afferent terminals that could play a role in the sensory disorders that follow nerve injury.
-
Electrical stimuli were applied to tooth-pulp in cats and the thresholds of the jaw-opening reflex and of neurons in the trigeminal sensory nuclei were determined. The effects of the method of preparation of the animal for stereotaxic recording were determined by making observations on animals set up in one of three ways: acutely in the usual manner; chronically, three to five days before recording; and acutely with precautions to minimize nociceptive input to the central nervous system. The threshold of the jaw-opening reflex increased progressively during the setting up of the normal, acute preparations and at the time brainstem recording began was significantly higher in these than in either the chronic or low-trauma acute preparations. ⋯ In the chronic and in low-trauma acute preparations, there was no significant difference between the thresholds of the units in the main sensory trigeminal nucleus and spinal subnucleus oralis compared with those in subnucleus caudalis. Thus the preparation of an animal for stereotaxic recording can cause a severe and long-lasting depression in the excitability of neurons in the trigeminal sensory nuclei and an increase in the threshold of the jaw-opening reflex. This effect will have influenced the results of previous studies on the responses evoked in central neurons by stimulation of tooth-pulp, and may have similarly affected recordings from other regions.
-
The effects of elevated CO2 (i.e. hypercapnia) on neurons in the nucleus tractus solitarii were studied using extracellular (n = 82) and intracellular (n = 33) recording techniques in transverse brain slices prepared from rat. Synaptic connections from putative chemosensitive neurons in the ventrolateral medulla were removed by bisecting each transverse slice and discarding the ventral half. In addition, the response to hypercapnia in 20 neurons was studied during high magnesium-low calcium synaptic blockade. ⋯ These neurons were not driven synaptically by putative chemosensitive neurons of the ventrolateral medulla since this region was removed from the slice. Furthermore, because chemosensitivity persisted in most neurons tested during synaptic blockade, we conclude that some neurons in the nucleus tractus solitarii are inherently CO2-chemosensitive. Although the function of dorsal medullary chemosensitive neurons cannot be determined in vitro, their location and their inherent chemosensitivity suggest a role in cardiorespiratory central chemoreception.
-
Intracellular recordings from the intermediolateral cell nucleus of the neonate rat thoracolumbar spinal cord slice preparation revealed a population of neurons which displayed three types of spontaneous rhythmic activity: burst firing, tonic beating and membrane oscillations. Most neurons displayed more than one of these types of activity. Neurons had mean resting potentials of -59 mV and input resistances ranging from 10 to 48 m omega. ⋯ Burst firing was abolished by cobalt and membrane hyperpolarization but not by barium, low calcium or tetraethylammonium chloride. The switch from tonic beating to burst firing may, in part, involve activation of a voltage- and calcium-dependent afterdepolarization potential. We conclude that a population of neurons in the lateral horn of the spinal cord are capable of rhythmic activity with underlying spontaneous pacemaker-like oscillations.
-
Synaptosomal-associated protein, 25 kD, (SNAP-25) is a novel protein containing a possible transition metal binding site and encoded by a neuronal-specific mRNA. We examined the distribution of SNAP-25 mRNA and protein in the hippocampal formation of the adult rat following kainic acid, colchicine, and entorhinal lesions. The results show that destruction of granule cells of the dentate gyrus and CA3 pyramidal cells did not diminish SNAP-25 immunoreactivity in the dendritic fields of these cells. ⋯ These results support the identification of SNAP-25 as a novel presynaptic protein. In addition, SNAP-25 immunoreactivity was increased in afferent fibers which project to areas adjacent to the deafferented region, and expression of SNAP-25 mRNA was increased in neurons deafferented by the lesion. Examination of SNAP-25 immunoreactivity and mRNA expression may provide a useful marker of major hippocampal pathways and of axonal plasticity in neurological disorders such as Alzheimer's disease and temporal lobe epilepsy.