Neuroscience
-
The classic opioid peptide, enkephalin, and the novel member of the opioid family, nociceptin/orphanin FQ, inhibit the spontaneous electrical activity of neurons recorded from the rostral ventrolateral medulla, presumably cardiovascular neurons. In this study, the putative effects of endomorphin-1 and endomorphin-2, the newly discovered endogenous ligands for the micro-opioid receptor, on the electrical activity of rostral ventrolateral medulla neurons were investigated in rat brain slices in vitro. Like enkephalin and nociceptin, perfusion of endomorphin-1 or endomorphin-2 profoundly inhibited spontaneous discharges of 43% and 38% of the medullary neurons, respectively. ⋯ The selective mu antagonist, beta-funaltrexamine, prevented the neuronal inhibition induced by endomorphins, but not by enkephalin and nociceptin. Neither naloxone nor beta-funaltrexamine alone had a significant effect on the firing rate of the neurons. These results demonstrate that endomorphin-1 and, to a lesser extent, endomorphin-2 exert an inhibitory modulation of the electrical activity of rostral ventrolateral medulla neurons, which is mediated through the stimulation of mu-opioid receptors.
-
We previously presented evidence [Nagy et al. (1997) Neuroscience 78, 533-548] that, in addition to their ubiquitous expression of connexin43, astrocytes produce a second connexin suggested to be connexin30, a recently discovered member of the family of gap junction proteins. A connexin30 specific antibody was subsequently developed and utilized here to confirm and extend our earlier observations. On western blots, this antibody detected a 30,000 mol. wt protein in rat, mouse, cat and human brain, and exhibited no cross-reaction with connexin43, connexin26 or any other known connexins expressed in brain. ⋯ In contrast to regional connexin43 expression, diencephalic and hindbrain areas exhibited considerably greater expression than forebrain areas, subcortical perivascular astrocytic endfeet were more heavily labelled for connexin30, white matter tracts such as corpus callosum, internal capsule and anterior commissure were devoid of connexin30, and appreciable levels of connexin30 during development were not seen until about postnatal day 15. These results indicate that connexin30 is expressed by gray, but not white matter astrocytes, its distribution is highly heterogeneous in gray matter, it is co-localized with connexin43 at astrocytic gap junctions where it forms homotypic or heterotypic junctions, and its emergence is delayed until relatively late during brain maturation. Taken together, these results suggest that astrocytic connexin30 expression at both regional and cellular levels is subject to regulation in adult brain as well as during brain development.
-
The immunocytochemical distribution of retinoid receptors has been analysed in the mouse adult central nervous system. All retinoic acid receptors (alpha, beta and gamma) and retinoid X receptors (alpha, beta and gamma) were detected and found to exhibit specific patterns of expression in various areas of the telencephalon, diencephalon and rhombencephalon. The protein localization of several retinoic acid receptors and retinoid X receptors did not correlate with the distribution of the corresponding RNA transcripts, as studied by in situ hybridization and RNase protection assays. This suggests that the expression of retinoid receptors could be post-transcriptionally regulated, which may contribute to their specific localization in the adult nervous system.
-
Extracellular levels of dopamine are increased in response to systemic administration of cocaine in several brain areas including the nucleus accumbens and medial prefrontal cortex. While the cocaine-induced increase in extracellular dopamine levels in the nucleus accumbens is augmented after repeated daily cocaine, the response of extracellular dopamine levels in the medial prefrontal cortex is attenuated. Since dopamine in the medial prefrontal cortex has an inhibitory effect on nucleus accumbens dopamine levels and locomotor activity, the role of medial prefrontal cortex dopamine tolerance in the expression of sensitized locomotor behavior was further examined by injection of D-amphetamine sulfate into the prelimbic portion of the medial prefrontal cortex just prior to cocaine challenge in cocaine-sensitized rats. ⋯ The results suggest that in rats sensitized to cocaine, decreased medial prefrontal cortex dopamine levels in response to cocaine challenge may contribute to behavioral sensitization. Furthermore, the data indicate the possibility that there is an optimal range at which medial prefrontal cortex amphetamine exerts maximal behavioral inhibition. These findings implicate a role for decreased cortical control in producing sensitized behavioral responding to cocaine.
-
An understanding of the interaction between oestrogen and the nitric oxide synthase/nitric oxide system is important for determining the roles of nitric oxide in central nervous control of osmotic homeostasis and certain aspects of reproduction. The effects of oestrogen on nitric oxide synthase and nitric oxide synthase activity were investigated in the magnocellular neurosecretory system. Ovariectomized female rats were injected subcutaneously with 17beta-estradiol benzoate either 10 microg daily for four days (short-term low-dose) or 200 microg daily for 21 days (long-term high-dose). ⋯ Long-term high-dose oestrogen treatment also had no effect on nitric oxide synthase gene expression or immunoreactivity, but caused a reduction of the proportion of NADPH-diaphorase-positive neurons in the supraoptic nucleus and a reduction in the intensity of this histochemical staining. Qualitatively similar changes were observed in the magnocellular part of the paraventricular nucleus. The results provide, for the first time, evidence of a complex interaction between oestrogen and nitric oxide synthase in the neuroendocrine system in which nitric oxide synthase activity is regulated differently in the magnocellular cell bodies and axonal terminals and in which the activity of the enzyme rather than its expression is controlled.