Neuroscience
-
The distribution of acetylcholinesterase and of two neuropeptide (substance P and calcitonin gene-related peptide) immunoreactivities has been investigated in sensory neurons of lumbosacral dorsal root ganglia during chick embryo development, combining immunolocalization of neuropeptides with simultaneous histochemical detection of acetylcholinesterase, in order to study co-localization of the two peptides and their relations with acetylcholinesterase. Acetylcholinesterase at E7 of development appears in only a few neurons, usually the larger ones located in the lateroventral region of the ganglia. As development proceeds the number of neurons and intensity of staining increase. ⋯ Neuropeptide-positive cells are usually devoid of any acetylcholinesterase activity until E15. They become positive for the enzyme at later stages. The significance of acetylcholinesterase expression in sensory neurons and the possible relation of its appearance and neuron size is discussed.
-
Electrical stimuli were applied to tooth-pulp in cats and the thresholds of the jaw-opening reflex and of neurons in the trigeminal sensory nuclei were determined. The effects of the method of preparation of the animal for stereotaxic recording were determined by making observations on animals set up in one of three ways: acutely in the usual manner; chronically, three to five days before recording; and acutely with precautions to minimize nociceptive input to the central nervous system. The threshold of the jaw-opening reflex increased progressively during the setting up of the normal, acute preparations and at the time brainstem recording began was significantly higher in these than in either the chronic or low-trauma acute preparations. ⋯ In the chronic and in low-trauma acute preparations, there was no significant difference between the thresholds of the units in the main sensory trigeminal nucleus and spinal subnucleus oralis compared with those in subnucleus caudalis. Thus the preparation of an animal for stereotaxic recording can cause a severe and long-lasting depression in the excitability of neurons in the trigeminal sensory nuclei and an increase in the threshold of the jaw-opening reflex. This effect will have influenced the results of previous studies on the responses evoked in central neurons by stimulation of tooth-pulp, and may have similarly affected recordings from other regions.
-
The effects of elevated CO2 (i.e. hypercapnia) on neurons in the nucleus tractus solitarii were studied using extracellular (n = 82) and intracellular (n = 33) recording techniques in transverse brain slices prepared from rat. Synaptic connections from putative chemosensitive neurons in the ventrolateral medulla were removed by bisecting each transverse slice and discarding the ventral half. In addition, the response to hypercapnia in 20 neurons was studied during high magnesium-low calcium synaptic blockade. ⋯ These neurons were not driven synaptically by putative chemosensitive neurons of the ventrolateral medulla since this region was removed from the slice. Furthermore, because chemosensitivity persisted in most neurons tested during synaptic blockade, we conclude that some neurons in the nucleus tractus solitarii are inherently CO2-chemosensitive. Although the function of dorsal medullary chemosensitive neurons cannot be determined in vitro, their location and their inherent chemosensitivity suggest a role in cardiorespiratory central chemoreception.
-
Intracellular recordings from the intermediolateral cell nucleus of the neonate rat thoracolumbar spinal cord slice preparation revealed a population of neurons which displayed three types of spontaneous rhythmic activity: burst firing, tonic beating and membrane oscillations. Most neurons displayed more than one of these types of activity. Neurons had mean resting potentials of -59 mV and input resistances ranging from 10 to 48 m omega. ⋯ Burst firing was abolished by cobalt and membrane hyperpolarization but not by barium, low calcium or tetraethylammonium chloride. The switch from tonic beating to burst firing may, in part, involve activation of a voltage- and calcium-dependent afterdepolarization potential. We conclude that a population of neurons in the lateral horn of the spinal cord are capable of rhythmic activity with underlying spontaneous pacemaker-like oscillations.
-
The study was designed to obtain information on the spinal processing of input from receptors in deep somatic tissues (muscle, tendon, joint). In anaesthetized rats, the impulse activity of single dorsal horn cells was recorded extracellularly. In a pilot series, the proportion of neurons responding to mechanical stimulation of deep tissues was determined: 46.7% had receptive fields in the skin only, 35.5% could only be driven from deep tissues (deep cells), and 17.7% possessed a convergent input from both skin and deep tissues (cutaneous-deep cells). ⋯ In these presumably nociceptive cells the descending inhibition had a differential action in that the input from deep tissues was more strongly affected than was the cutaneous input to the same neuron. The recording sites of the neurons with deep input were located in the superficial dorsal horn and in and around lamina V. The results suggest that in the rat a considerable proportion of dorsal horn cells receives input from deep nociceptors and that this input is controlled by descending pathways in a rather selective way.