Neuroscience
-
Schizophrenia (SZ) is a complex mental illness characterized by disturbances in thinking, emotionality, and behavior, significantly impacting the quality of life for individuals affected and those around them. The etiology of SZ involves intricate interactions between genetic and environmental factors, although the precise mechanisms remain incompletely understood. Genetic predisposition, neurotransmitter dysregulation (particularly involving dopamine and serotonin), and structural brain abnormalities, including impaired prefrontal cortex function, have been implicated in SZ development. ⋯ Prenatal undernutrition may disrupt myelin formation, rendering individuals more susceptible to SZ pathology. This review explores the potential relationship between prenatal undernutrition, myelin alterations, and susceptibility to SZ. By delineating the etiopathogenesis, examining genetic and environmental factors associated with SZ, and reviewing the relationship between SZ and myelination disorders, alongside the impact of malnutrition on myelination, we aim to examine how malnutrition might be linked to SZ by altering myelination processes, which contribute to increasing the understanding of SZ etiology and help identify targets for intervention and management.
-
Primary angle-closure glaucoma (PACG) is a severe and irreversible blinding eye disease characterized by progressive retinal ganglion cell death. However, prior research has predominantly focused on static brain activity changes, neglecting the exploration of how PACG impacts the dynamic characteristics of functional brain networks. This study enrolled forty-four patients diagnosed with PACG and forty-four age, gender, and education level-matched healthy controls (HCs). ⋯ Subsequently, a support vector machine (SVM) model leveraging functional connectivity (FC) and FNC was applied to differentiate PACG patients from HCs. Our study underscores the presence of modified functional connectivity within large-scale brain networks and abnormalities in dynamic temporal metrics among PACG patients. By elucidating the impact of changes in large-scale brain networks on disease evolution, researchers may enhance the development of targeted therapies and interventions to preserve vision and cognitive function in PACG.
-
Randomized Controlled Trial
The influence of menstrual phase on synaptic plasticity induced via intermittent theta-burst stimulation.
Ovarian hormones influence the propensity for short-term plasticity induced by repetitive transcranial magnetic stimulation (rTMS). Estradiol appears to enhance the propensity for neural plasticity. It is currently unknown how progesterone influences short-term plasticity induced by rTMS. ⋯ These findings suggest women experience a variable propensity for iTBS-induced short-term plasticity across the menstrual cycle. This information is important for designing studies aiming to induce plasticity via rTMS in women.
-
The Ribosomal S6 Kinase (RSK) family of serine/threonine kinases function as key downstream effectors of the MAPK signaling cascade. In the nervous system, RSK signaling plays crucial roles in neuronal development and contributes to activity-dependent neuronal plasticity. This study examined the role of RSK signaling in cell viability during neuronal development and in neuroprotection in the mature nervous system. ⋯ Finally, we used the endothelin 1 (ET-1) model of ischemia to examine the neuroprotective effects of RSK signaling in the mature hippocampus in vivo. Notably, in the absence of RSK inhibition, the granule cell layer (GCL) was resistant to the effects of ET-1; However, disruption of RSK signaling (via the microinjection of BiD1870) prior to ET-1 injection triggered cell death within the GCL, thus indicating a neuroprotective role for RSK signaling in the mature nervous system. Together these data reveal distinct, developmentally-defined, roles for RSK signaling in the nervous system.
-
Deception is a complex social behavior that manifests in various forms, including scams. To successfully deceive victims, liars have to continually devise novel scams. This ability to create novel scams represents one kind of malevolent creativity, referred to as lying. ⋯ Additionally, the perception of the victim's emotions (related to right pre-motor cortex) might diminish the quality of highly original scams. Furthermore, an efficient and cohesive neural coupling state appears to be a key factor in generating high-creativity scams. These findings suggest that the right FPC was crucial in scam creation, highlighting a neural basis for balancing malevolent creativity against moral considerations in high-creativity deception.