Neuroscience
-
In this study, the electrophysiological and biochemical consequences of repeated exposure to morphine in male rats on glutamatergic synaptic transmission, synaptic plasticity, the expression of GABA receptors and glutamate receptors at the temporoammonic-CA1 synapse along the longitudinal axis of the hippocampus (dorsal, intermediate, ventral, DH, IH, VH, respectively) were investigated. Slice electrophysiological methods, qRT-PCR, and western blotting techniques were used to characterize synaptic plasticity properties. We showed that repeated morphine exposure (RME) reduced excitatory synaptic transmission and ability for long-term potentiation (LTP) in the VH as well as eliminated the dorsoventral difference in paired-pulse responses. ⋯ In sum, the impact of morphine may differ depending on the region of the hippocampus studied. A distinct change in the short- and long-term synaptic plasticity along the hippocampus long axis due to repeated morphine exposure, partially mediated by a change in the expression profile of glutamatergic receptor subunits. These findings can be useful in further understanding the cellular mechanism underlying deficits in information storage and, more generally, cognitive processes resulting from chronic opioid abuse.
-
Chronic cerebral hypoperfusion (CCH) can cause vascular cognitive impairment and dementia. AT1R, angiotensin II type I receptor, plays a vital role in central nervous system pathologies, but its concrete function in vascular dementia is still unclear. Herein, we investigated the effects of AT1R during CCH by conditional knockout of the microglial AT1R and candesartan treatment. ⋯ However, we observed restoration of cerebral blood flow (CBF) but no significant neuronal loss in the hippocampus at 28 days after BCAS. Finally, we screened three hub genes (Ctss, Fcer1g, Tyrobp) associated with CCH. Our findings indicated that microglial expression of AT1R is critical for regulating neuroinflammation in CCH, and AT1R antagonism may be a feasible and promising method for ameliorating CCH-caused cognitive impairment.
-
Neuregulin receptor degradation protein 1 (Nrdp1) is a ring finger E3 ubiquitin ligase involved in some inflammation through ubiquitination, including macrophage polarization following cerebral hemorrhage. However, there is limited understanding regarding the mechanisms through which Nrdp1 modulates macrophage polarization and the potential impact of this modulation on neurological function. Using stereotactic injection and adenoviral transfection techniques, the corresponding animal models were constructed through injecting adenovirus, saline, or blood into the mouse striatum at different periods of time in this research. ⋯ Our results show that overexpression of Nrdp1 promotes the expression of a variety of M2 macrophage-associated markers and enhance transcriptional activity of arginase-1 (Arg1) protein through ubiquitination for early regulation M2 macrophage polarization. Additionally, Nrdp1 promotes hematoma absorption, increases IL-10 expression, inhibits inducible nitric oxide synthase (iNOS), IL-6, and TNF-α production, alleviates neurological impairment and brain edema, and accelerates functional recovery. These findings suggest that modulating macrophage polarization through Nrdp1 could be a therapeutic strategy for neurofunctional impairment in cerebral hemorrhage.
-
Parkinson's disease (PD) represents a multifaceted neurological disorder whose genetic underpinnings warrant comprehensive investigation. This study focuses on identifying genes integral to PD pathogenesis and evaluating their diagnostic potential. Initially, we screened for differentially expressed genes (DEGs) between PD and control brain tissues within a dataset comprising larger number of specimens. ⋯ To corroborate our findings, we analyzed two PD blood datasets and clinical plasma samples, confirming the elevated expression levels of these genes in PD patients. The association of the genes with PD, as reflected by the area under the curve (AUC) values for FOXO3, HIST2H2BE, and HDAC1, were moderate for each gene. Collectively, this research substantiates the heightened expression of FOXO3, HIST2H2BE, and HDAC1 in both PD brain and blood samples, underscoring their pivotal contribution to the pathogenesis of PD.
-
Our recent study revealed that fluorescent lamp light can penetrate deep into the brain of mice and rats leading to the development of typical histological characteristics associated with Parkinson's disease such as the loss of dopamine neurons in the substantia nigra. Monochromatic LED lights were thus used in this work to deepen our knowledge on the effects of the major wavelength peaks of fluorescent light on mouse and human dopaminergic cells. In particular, we exposed immortalized dopaminergic MN9D neuronal cells, primary cultures of mouse mesencephalic dopaminergic cells and human dopaminergic neurons differentiated from induced pluripotent stem cells (hiPSC) to different LED light wavelengths. ⋯ Notably, differentiated MN9D dopaminergic cells, which closely resemble mature dopamine neuronal phenotype, acutely exposed for 3 h at 610 nm, showed a clear increase in ROS production and cytotoxicity compared to controls undifferentiated MN9D cells. These increases were even more pronounced by the co-treatment with the oxidative agent H2O2. Collectively, these findings suggest that specific wavelengths, particularly those capable of penetrating deep into the brain, could potentially pose an environmental hazard in relation to Parkinson's disease.