Neuroscience
-
Secretory clusterin (sCLU) plays an important role in the research progress of nervous system diseases. However, the physiological function of sCLU in Parkinson's disease (PD) are unclear. The purpose of this study was to examine the effects of sCLU-mediated autophagy on cell survival and apoptosis inhibition in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced mouse model of PD. ⋯ These effects were also abrogated by sCLU intervention. Activation of PI3K/AKT/mTOR signaling with MPTP inhibited autophagy in the SN of MPTP mice; however, sCLU treatment activated autophagy in MPTP-induced PD mice by inhibiting PI3K/AKT/mTOR signaling. These data indicated that sCLU treatment had a neuroprotective effect in an MPTP-induced model of PD.
-
Ethanol is one of the most commonly used and abused substances in the world. While the behavioral effects of ethanol are well characterized, mechanisms of its action on neurons and synapses remain elusive. Prior research suggested that ethanol could affect neurons by interfering with metabolism of biologically active molecules, such as adenosine. ⋯ We conclude that A1Rs are not involved in mediating effects of ethanol on synaptic transmission in mouse visual cortex. However, A1Rs are necessary for development of mechanisms mediating facilitation at some excitatory synapses. Our results add evidence for the diversity of ethanol's effects and mechanisms of action on synaptic transmission in different brain structures, and even in the same brain area (visual cortex) in different species, rats vs mice.
-
Patients receiving neuraxial treatment with morphine for pain relief often experience a distressing pruritus. Neuroinflammation-mediated plasticity of sensory synapses in the spinal cord is critical for the development of pain and itch. Caspase-6, as an intracellular cysteine protease, is capable of inducing central nociceptive sensitization through regulating synaptic transmission and plasticity. ⋯ Recombinant caspase-6 directly exhibits scratching behaviors and spinal phosphorylation of ERK, which is compensated by PKMζ inhibition. Also, spinal inhibition of caspase-6 and PKMζ reduces the generation and maintenance of dermatitis-induced chronic itch. Together, these findings demonstrate that spinal caspase-6 modulation of PKMζ phosphorylation is important in the development of morphine-induced itch and dermatitis-induced itch in mice.
-
Hypoxia/reoxygenation caused by chronic intermittent hypoxia (CIH) plays an important role in cognitive deficits in patients with obstructive sleep apnea. However, the precise underlying mechanism remains unclear. This study investigated whether the NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome is involved in CIH-induced spatial learning and memory impairment in mice, and the possible underlying upstream and downstream mechanisms. ⋯ BV2 cells were exposed to intermittent hypoxia (21% O2-1% O2, 90 min/cycle) for 48 h to investigate the possible mechanisms in vitro. We found that: 1) inhibition of NLRP3 inflammasome activation improved CIH-induced spatial learning and memory impairment in mice. 2) CIH damaged hippocampal neurons but increased the number of microglia in mice hippocampi; CIH activated microglia-specific NLRP3 inflammasome, leading to upregulation of matured IL-1β and N-GSDMD. 3) intermittent hypoxia activated NLRP3 inflammasome via the ROS-NF-κB signaling pathway to promote the release of matured IL-1β from microglia in a GSDMD-dependent manner without pyroptosis. 4) The IL-1β released from microglia might impair the synaptic plasticity of hippocampal CA3-CA1 synapses by acting on IL-1 receptors in hippocampal neurons. Our findings reveal that ROS-NF-κB-NLRP3 inflammasome-GSDMD dependent IL-1β release from microglia may participate in CIH-induced spatial learning and memory impairment by acting on hippocampal neuronal IL-1 receptor, leading to synaptic plasticity impairment.
-
Current evidence suggests that glial cells provide C3 carbon sources to fuel neuronal activity; however, this notion has become challenged by biosensor studies carried out in acute brain slices or in vivo, showing that neuronal activity does not rely on the import of astrocyte-produced L-lactate. Rather, stimulated neurons become net lactate exporters, as it was also shown in Drosophila neurons, in which astrocyte-provided lactate returns as lipid droplets to be stored in glial cells. In this view, we investigate whether exogenously supplied monocarboxylates can support Drosophila motoneuron neurotransmitter release (NTR). ⋯ Our findings show that exogenously supplied monocarboxylates trigger a large transient synaptic enhancement just under extreme glycolysis reduction but fail to maintain NTR under sustained synaptic demand, still at low frequency stimulation, driven to the synapses to a synaptic depression state. Glycolysis activation, by adding sucrose to the monocarboxylate bath solution, restores the motoneuron NTR ability, giving place to a hexoses role in SV recruitment. Moreover these results suggest exogenously supplied C3 carbon sources could have an additional role beyond providing energetic support for neural activity.