Neuroscience
-
Inhibitory parvalbumin (PV) interneurons regulate the activity of neural circuits within brain regions involved in emotional processing, including the prefrontal cortex (PFC). Recently, rodent studies have implicated a stress-induced increase in prefrontal PV neuron activity in the development of anxiety behaviors, particularly in females. However, the mechanisms through which stress increases activity of prefrontal PV neurons remain unknown. ⋯ Here, we first showed that unpredictable chronic mild stress (UCMS) increased expression of Kv3.1 channels on prefrontal PV neurons in female mice, a potential mechanism underlying the previously observed hyperactivity of these neurons after stress. We then showed that female mice deficient in Kv3.1 channels displayed resilience to UCMS-induced anxiety-like behaviors. Altogether, our findings implicate Kv3.1 channels in the development of anxiety-like behaviors following UCMS, particularly in females, providing a novel mechanism to understand sex-specific vulnerabilities to stress-induced psychopathologies.
-
The inflammatory mechanism of intracerebral hemorrhage (ICH) has been widely studied, and it is believed that the regulation of this mechanism is of great significance to the prognosis. In the early stage of the acute phase of ICH, the release of a large number of inflammatory factors around the hematoma can recruit more inflammatory cells to infiltrate the area, further release inflammatory factors, cause an inflammatory cascade reaction, aggravate the volume of cerebral hematoma and edema and further destroy the blood-brain barrier (BBB), according to this, the crosstalk between cells may be of great significance in secondary brain injury (SBI). Because most of the cells recruited are inflammatory immune cells, this paper mainly discusses the cells based on the inflammatory mechanism to discuss their functions after ICH, we found that among the main cells inherent in the brain, glial cells account for the majority, of which microglia are the most widely studied and it can interact with a variety of cells, which is reflected in the literature researches on its pathogenesis and treatment. We believe that exploring multi-mechanism and multi-cell regulated drugs may be the future development trend, and the existing research, the comparison and unification of modeling methods, and the observation of long-term efficacy may be the first problem that researchers need to solve.
-
Parkinson's disease (PD) is the second most common neurodegenerative disease, characterized by abnormal α-synuclein misfolding and aggregation, mitochondrial dysfunction, oxidative stress, as well as progressive death of dopaminergic neurons in the substantia nigra. Molecular chaperones play a role in stabilizing proteins and helping them achieve their proper structure. Previous studies have shown that overexpression of heat shock protein 90 (HSP90) can lead to the death of dopaminergic neurons associated with PD. ⋯ We will highlight the under-investigated neuroprotective effects of HSP90 inhibition, including modulation of oxidative stress, mitochondrial dysfunction, PINK/PARKIN, heat shock factor 1 (HSF1), histone deacetylase 6 (HDAC6), and the PHD2-HSP90 complex-mediated mitochondrial stress pathway. By examining previous literature, this review uncovers overlooked neuroprotective mechanisms and emphasizes the need for further research on HSP90 inhibitors as potential therapeutic strategies for PD. Finally, the review discusses the potential limitations and possibilities of using HSP90 inhibitors in PD therapy.
-
Diagnosing posttraumatic stress disorder (PTSD) using only single-modality images is controversial. We aimed to use multimodal magnetic resonance imaging (MRI) combining structural, diffusion, and functional MRI to possibly provide a more comprehensive viewpoint on the decisive characteristics of PTSD patients. Typhoon-exposed individuals with (n = 26) and without PTSD (n = 32) and healthy volunteers (n = 30) were enrolled. ⋯ A novel ReHo component was found to distinguish PTSD and trauma-exposed controls, including the precuneus, IPL, middle frontal gyrus, middle occipital gyrus, and cerebellum. This study reveals that PTSD individuals exhibit intertwined functional and structural anomalies within the default mode network. Some alterations within this network may serve as a potential marker to distinguish between PTSD patients and trauma-exposed controls.
-
Meta Analysis
Effects of Beta Lactams on Behavioral Outcomes of Substance Use Disorders: A Meta-Analysis of Preclinical Studies.
Preclinical studies demonstrated that beta-lactams have neuroprotective effects in conditions involving glutamate neuroexcitotoxicity, including substance use disorders (SUDs). This meta-analysis aims to analyze the existing evidences on the effects of beta-lactams as glutamate transporter 1 (GLT-1) upregulators in animal models of SUDs, identification of gaps in the literature, and setting the stage for potential translation into clinical phases. ⋯ This meta-analysis revealed that enhancing GLT-1 expression in the brain through beta-lactams seemed to be a promising treatment approach in the context of substance use disorders, as indicated by results in animal models.