Neuroscience
-
Review
Hyperscanning Literature After Two Decades of Neuroscientific Research: a Scientometric Review.
Hyperscanning, a neuroimaging approach introduced in 2002 for simultaneously recording the brain activity of multiple participants, has significantly contributed to our understanding of social interactions. Nevertheless, the existing literature requires systematic organization to advance our knowledge. This study, after two decades of hyperscanning research, aims to identify the primary thematic domains and the most influential documents in the field. ⋯ Notably, while hyperscanning was initially developed for functional magnetic resonance imaging (fMRI), our findings indicate a substantial influence of research conducted using electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS). The introduction of fNIRS and advancements in EEG methods have enabled the implementation of more ecologically valid experiments for investigating social interactions. The study also highlights the need for more research that combines multi-brain neural stimulation with neuroimaging techniques to understand the causal role played by interpersonal neural synchrony in social interactions.
-
The functioning of the brain and its impact on behavior, emotions, and cognition can be affected by both neurological and psychiatric disorders that impose a significant burden on global health. Phytochemicals are helpful in the treatment of several neurological and psychological disorders, including anxiety, depression, Huntington's disease (HD), Parkinson's disease (PD), Alzheimer's disease (AD), and autism spectrum disorder (ASD), because they have symptomatic benefits with few adverse reactions. ⋯ This review focuses on the potential efficacy of phytochemicals such as flavonoids, terpenoids, and polyphenols in regulating gut flora and providing symptomatic relief for a range of neurological and psychological conditions. Evidence-based research has shown the medicinal potentials of these phytochemicals, but additional study is required to determine whether altering gut microbiota might slow the advancement of neurological and psychological problems.
-
Review
The Role of Intestinal Microbiota and Probiotics Supplementation in Multiple Sclerosis Management.
Multiple sclerosis (MS) is a neurological autoimmune disorder predominantly afflicting young adults. The etiology of MS is intricate, involving a variety of environmental and genetic factors. Current research increasingly focuses on the substantial contribution of gut microbiota in MS pathogenesis. ⋯ The present study comprehensively explains the gut microbiome's profound influence on the central nervous system (CNS). It underscores the pivotal role played by probiotics in forming the immune system and modulating neurotransmitter function. Furthermore, the investigation elucidates various instances of probiotic utilization in MS patients, shedding light on the potential therapeutic advantages afforded by this intervention.
-
Stress resilience has been largely regarded as a process in which individuals actively cope with and recover from stress. Over the past decade, the emergence of large-scale brain networks has provided a new perspective for the study of the neural mechanisms of stress. However, the role of inter-network functional-connectivity (FC) and its temporal fluctuations in stress resilience is still unclear. ⋯ For the temporal dynamics index, FC among the dorsal-attention-network (DAN), central-executive-network (CEN) and visual-network (VN) decreased significantly during repeated stress induction. Moreover, the decline of FC positively signaled stress resilience, and this relationship only exist in people with high BAS. The current research elucidates the intricate neural underpinnings of stress resilience, offering insights into the adaptive mechanisms underlying effective stress responses.
-
The ventrolateral prefrontal cortex (VLPFC) and dorsolateral prefrontal cortex (DLPFC) have been found to play important roles in negative emotion processing. However, the specific time window of their involvement remains unknown. This study addressed this issue in three experiments using single-pulse transcranial magnetic stimulation (TMS). ⋯ Furthermore, TMS applied over the DLPFC at both 0 ms and 600 ms after negative emotional exposure also resulted in deteriorated negative feelings. These findings provide potential evidence for the VLPFC-dependent semantic processing (∼400 ms) and the DLPFC-dependent attentional and cognitive control (∼0/600 ms) in negative emotion processing. The asynchronous involvement of these frontal cortices not only deepens our understanding of the neural mechanisms underlying negative emotion processing but also provides valuable temporal parameters for neurostimulation therapy targeting patients with mood disorders.