Neuroscience
-
Inflammasome activation and the consequent release of pro-inflammatory cytokines play a crucial role in the development of sensory/motor deficits following spinal cord injury (SCI). Immunomodulatory activities are exhibited by Schwann cells (SCs) and Wharton's jelly mesenchymal stem cells (WJ-MSCs). In this study, we aimed to compare the effectiveness of these two cell sources in modulating the absent in melanoma 2 (AIM2) inflammasome complex in rats with SCI. ⋯ Moreover, the administration of 3 × 105 cells resulted in motor recovery improvement in both treatment groups (P < 0.05). Although not statistically significant, these effects were more prominent in the SC-treated animals. In conclusion, SC therapy demonstrated greater efficacy in targeting AIM2 inflammasome activation and the associated inflammatory pathway in SCI experiments compared to WJ-MSCs.
-
Increasing evidence suggests that alternative splicing plays a critical role in pain, but its underlying mechanism remains elusive. Herein, we employed complete Freund's adjuvant (CFA) to induce inflammatory pain in mice. A combination of genomics research techniques, lentivirus-based genetic manipulations, behavioral tests, and molecular biological technologies confirmed that splicing factor Cwc22 mRNA and CWC22 protein were elevated in the spinal dorsal horn at 3 days after CFA injection. ⋯ Comprehensive transcriptome and genome analysis identified the secreted phosphoprotein 1 (Spp1) as a potential gene of CWC22-mediated alternative splicing, however, only Spp1 splicing variant 4 (Spp1 V4) was involved in thermal and mechanical nociceptive regulation. In conclusion, our findings demonstrate that spinal CWC22 regulates Spp1 V4 to participate in CFA-induced inflammatory pain. Blocking CWC22 or CWC22-mediated alternative splicing may provide a novel therapeutic target for the treatment of persistent inflammatory pain.
-
Meta Analysis
Altered functional connectivity in working memory network after acute sleep deprivation.
Acute sleep deprivation (SD) has a detrimental effect on working memory (WM). However, prior functional magnetic resonance imaging (fMRI) studies have failed to reach consistent results on brain functions underlying WM decline after acute SD. Thus, we aimed to identify convergent patterns of abnormal brain functions due to WM decline after acute SD. ⋯ The increased FC between the left declive and right sub-gyral, left cuneus and left lingual gyrus, and left cuneus and right post cingulate were found. Furthermore, the impaired WM performance negatively correlated with increased FC. Taken together, our findings highlight that the altered FC in WM network may be the underlying mechanisms of WM decline after acute SD.
-
The benefits of aerobic exercises for memory are known, but studies of strength training on memory consolidation are still scarce. Exercise stimulates the release of metabolites and myokines that reaching the brain stimulate the activation of NMDA-receptors and associated pathways related to cognition and synaptic plasticity. The aim of the present study was to investigate whether the acute strength exercise could promote the consolidation of a weak memory. ⋯ Results showed that exercise induced the consolidation of a weak memory and this effect was dependent on the activation of NMDA-receptors. The hippocampal overexpression of BDNF and Synapsin I through exercise where NMDA-receptors dependent. Our findings showed that strength exercise strengthened fear memory consolidation and modulates the overexpression of BDNF and synapsin I through the activation of NMDA-receptors dependent signaling pathways.
-
Epilepsy is a chronic neurological complication characterized by unprovoked seizure episodes due to the imbalance between excitatory and inhibitory neurons. The epileptogenesis process has been reported to be involved in chronic epilepsy however, the mechanism underlying epileptogenesis remains unclear. Recent studies have shown the possible involvement of Wnt/β-catenin signaling in the neurogenesis and neuronal reorganization in epileptogenesis. ⋯ Our findings suggest that the activated Wnt/β-catenin signaling in chronic epilepsy might be the possible mechanism underlying epileptogenesis as indicated by increased neuronal count, increased synaptic density, astrogliosis and apoptosis in chronic epilepsy. These findings can help target the Wnt/β-catenin pathway differentially depending upon the type of epilepsy. The acute stage characterized by SE can be improved by targeting GSK-3β levels and the chronic stage characterized by temporal lobe epilepsy can be improved by targeting β-catenin and disheveled proteins.