Applied and environmental microbiology
-
Appl. Environ. Microbiol. · Apr 2017
Predominance and Metabolic Potential of Halanaerobium spp. in Produced Water from Hydraulically Fractured Marcellus Shale Wells.
Microbial activity in the produced water from hydraulically fractured oil and gas wells may potentially interfere with hydrocarbon production and cause damage to the well and surface infrastructure via corrosion, sulfide release, and fouling. In this study, we surveyed the microbial abundance and community structure of produced water sampled from 42 Marcellus Shale wells in southwestern Pennsylvania (well age ranged from 150 to 1,846 days) to better understand the microbial diversity of produced water. We sequenced the V4 region of the 16S rRNA gene to assess taxonomy and utilized quantitative PCR (qPCR) to evaluate the microbial abundance across all 42 produced water samples. ⋯ Microbial activity in produced waters could lead to issues with corrosion, fouling, and souring, potentially interfering with hydraulic fracturing operations. Previous studies have found microorganisms contributing to corrosion, fouling, and souring to be abundant across produced water samples from hydraulically fractured wells; however, these findings were based on a limited number of samples and well sites. In this study, we investigated the microbial community structure in produced water samples from 42 unconventional Marcellus Shale wells, confirming the dominance of the genus Halanaerobium in produced water and its metabolic potential for acid and sulfide production and biofilm formation.