Brain research bulletin
-
Brain research bulletin · Sep 2021
Antidepressant effect of catalpol on corticosterone-induced depressive-like behavior involves the inhibition of HPA axis hyperactivity, central inflammation and oxidative damage probably via dual regulation of NF-κB and Nrf2.
This study aimed to investigate the antidepressant effect and mechanism of catalpol on corticosterone (CORT)-induced depressive-like behavior in mice for the first time. As a result, CORT injection induced depressive-like behaviors of mice in behavioral tests, aggravated the serum CORT, adrenocorticotropic hormone, and corticotropin-releasing hormone levels, and conspicuously elevated the phosphorylations of nuclear factor kappa-B (NF-κB) in the hippocampus and frontal cortex, and down-regulated the expression levels of nuclear factor erythroid-2-related factor 2 (Nrf2). ⋯ On the contrary, catalpol administration markedly suppressed the abnormalities of the above indicators. From the overall results, this study displayed that catalpol exerted a beneficial effect on CORT-induced depressive-like behavior in mice possibly via the inhibition of hypothalamus-pituitary-adrenal (HPA) axis hyperactivity, central inflammation and oxidative damage at least partially through dual regulation of NF-κB and Nrf2.
-
Brain research bulletin · Sep 2021
BDNF promotes neuronal survival after neonatal hypoxic-ischemic encephalopathy by up-regulating Stx1b and suppressing VDAC1.
Neonatal hypoxic-ischemic encephalopathy (HIE), is a major cause of neurologic disorders in terms of neonates, with the unclear underlying mechanisms. In the study, triphenyl tetrazolium chloride (TTC) staining and Zea-longa score were performed to examine the neurologic damage in hypoxia and ischemia (HI) rats. The results showed that HI induced obviously infarct and serious neurologic impairment in neonatal rats. ⋯ Finally, the interaction network among BDNF and associated proteins as examined by Genemania and confirmed by qRT-PCR. We found that the expression of VDAC1 was decreased and Stx1b was increased when BDNF overexpressing, which indicated that BDNF promoted neurite regrowth after OGD might be related to downregulation of VDAC1 and upregulation of Stx1b. Our results might provide novel strategy for the treatment of neurological defects induced by cerebral ischemia and hypoxia.
-
Brain research bulletin · Jul 2021
NLRP3 inflammasome inhibition by histone acetylation ameliorates sevoflurane-induced cognitive impairment in aged mice by activating the autophagy pathway.
Age-related cognitive impairment is associated with diminished autophagy and progressively increased neuroinflammation. Histone acetylation has been shown to be a key process in sevoflurane-induced neurobehavioral abnormalities. Here, we investigated whether histone acetylation regulates the interaction between autophagy and the NLRP3 inflammasome in models of sevoflurane-induced cognitive impairment and explored the underlying molecular mechanisms. ⋯ Cognitive deficits and inadequate autophagy induced by sevoflurane were reversed and NLRP3 inflammasome activation was inhibited by SAHA. Treatment with 3-MA, an autophagy inhibitor, eliminated the neuroprotective effects of SAHA on improving cognition in mice, activating autophagy and downregulating the NLRP3 inflammasome. Based on these results, histone acetylation activates autophagy plays an important role in inhibiting the activation of the NLRP3 inflammasome to protect the host from excessive neuroinflammation and sevoflurane-induced cognitive dysfunction in the aging brain.
-
Brain research bulletin · Jun 2021
The α2δ-1-NMDAR1 interaction in the trigeminal ganglion contributes to orofacial ectopic pain following inferior alveolar nerve injury.
Orofacial ectopic pain can often arise following nerve injury. However, the exact mechanism responsible for orofacial ectopic pain induced by trigeminal nerve injury remains unknown. The α2δ-1 and glutamate N-methyl-d-aspartic acid receptor (NMDAR) interactions have been demonstrated to participate in neuropathic pain regulation in the spinal cord. ⋯ Furthermore, the results of behavioral tests demonstrated that intra-TG injection of gabapentin (α2δ-1 inhibitory ligand) or memantine hydrochloride (NMDAR antagonist) reversed the decrease in mechanical head-withdrawal threshold (HWT) in IANX rats. Moreover, inhibition of α2δ-1 by intra-TG administration of gabapentin suppressed the upregulation of the NMDAR1 protein, and the inhibition of NMDAR by intra-TG administration of memantine hydrochloride inhibited the increased expression of α2δ-1 protein induced by IANX. In conclusion, the physical and functional interaction between α2δ-1 and NMDAR1 is critical for the development of orofacial ectopic pain, indicating that α2δ-1, NMDAR1, and the α2δ-1-NMDAR1 complex may represent potential targets for the treatment of orofacial ectopic pain.
-
Brain research bulletin · Apr 2021
Repeated exposure to propofol in the neonatal period impairs hippocampal synaptic plasticity and the recognition function of rats in adulthood.
Anesthesia of neonates with propofol induces persistent behavioral abnormalities in adulthood. Although propofol-triggered apoptosis of neurons in the developing brain may contribute to the development of cognitive deficits, the mechanism of neurotoxicity induced by neonatal exposure to propofol remains unclear. In this study, the effects of neonatal propofol anesthesia on synaptic plasticity and neurocognitive function were investigated. ⋯ Morris water maze experiments showed that repeated neonatal exposure to propofol significantly prolonged the escape latency and decreased the time spent in the target quadrant and the number of platform crossings. NORT and OLT showed that repeated neonatal exposure to propofol markedly reduced the Investigation Time for novel object or location. All of the results above indicate that repeated exposure to propofol in the neonatal period can impair hippocampal synaptic plasticity and the recognition function of rats in adulthood.