Brain research bulletin
-
Brain research bulletin · Oct 2013
ReviewThe involvement of ERK/CREB/Bcl-2 in depression-like behavior in prenatally stressed offspring rats.
A number of studies reveal that prenatal stress (PS) may induce an increased vulnerability to depression in offspring. Some evidences indicate that extracellular signal-regulated kinase (ERK)-cyclic AMP responsive element binding protein (CREB) signal system may play an important role in the molecular mechanism of depression. ⋯ Changes induced by PS were partly prevented by MK-801, an N-methyl-D-aspartate (NMDA) receptor antagonist. These findings suggested that the ERK-CREB system might be related with the depression-like behavior in juvenile offspring rats subjected to PS, in which NMDA receptors might be involved.
-
Brain research bulletin · Oct 2013
ReviewA comparison of phenylketonuria with attention deficit hyperactivity disorder: do markedly different aetiologies deliver common phenotypes?
Phenylketonuria (PKU) is a well-defined metabolic disorder arising from a mutation that disrupts phenylalanine metabolism and so produces a variety of neural changes indirectly. Severe cognitive impairment can be prevented by dietary treatment; however, residual symptoms may be reported. These residual symptoms appear to overlap a more prevalent childhood disorder: Attention Deficit/Hyperactivity Disorder (ADHD). ⋯ For each of PKU and ADHD separately, a subset of deficits has been attributed to a primary dysfunction of behavioural inhibition. In the case of ADHD (excluding the inattentive subtype) this has been proposed to involve a specific failure of the BIS; and we suggest that this is also true of PKU. This accounts for a substantial proportion of the parallels in the superficial symptoms of both disorders and we see this as linked to prefrontal, rather than more general, dysfunction of the BIS.
-
Brain research bulletin · Oct 2013
NF-κB, ERK, p38 MAPK and JNK contribute to the initiation and/or maintenance of mechanical allodynia induced by tumor necrosis factor-alpha in the red nucleus.
Previous studies have demonstrated that tumor necrosis factor-alpha (TNF-α) in the red nucleus (RN) plays facilitated roles in the development of abnormal pain. Here, the roles of nuclear factor-kappa B (NF-κB), extracellular signal-regulated kinase (ERK), p38 mitogen-activated protein kinase (MAPK) and c-Jun N-terminal kinase (JNK) in TNF-α-evoked mechanical allodynia were investigated. Repeated microinjection of recombinant rat TNF-α (20 ng daily for 3 days) into the unilateral RN of normal rats induced a significant mechanical allodynia in the contralateral but not ipsilateral hind paw at the fifth day and disappeared 24h later. ⋯ Post-treatment with PDTC, PD98059 or SP600125 (but not SB203580) at 4h after TNF-α microinjected into the RN significantly reversed TNF-α-evoked mechanical allodynia. These results further prove that TNF-α in the RN plays a crucial role in the development of abnormal pain, and the algesic effect of TNF-α is initiated through activating NF-κB, ERK and p38 MAPK. The later maintenance of TNF-α-evoked mechanical allodynia mainly relies on the activation of NF-κB, ERK and JNK, but not p38 MAPK.
-
Brain research bulletin · Oct 2013
Pronociception from the dorsomedial nucleus of the hypothalamus is mediated by the rostral ventromedial medulla in healthy controls but is absent in arthritic animals.
The dorsomedial nucleus of the hypothalamus (DMH) has been proposed to participate in stress-induced hyperalgesia through facilitation of pronociceptive cells in the rostroventromedial medulla (RVM). We hypothesized that the DMH participates in hyperalgesia induced by arthritis. The DMH was pharmacologically manipulated while assessing heat-evoked nociceptive behavior or the discharge rates of pronociceptive RVM ON- and antinociceptive RVM OFF-like cells in NAIVE, SHAM and monoarthritic (ARTH) animals. ⋯ In accordance with these behavioral results, activation or inhibition of the DMH induced pronociceptive changes in the discharge rates of RVM cells in NAIVE and SHAM animals, which suggests that the DMH has a pronociceptive role mediated by the RVM in normal animals. However, in ARTH animals, both glutamate and lidocaine in the DMH failed to influence either pain-like behavior or noxious stimulation-evoked responses of RVM cells, while blocking the DMH increased spontaneous activity in the pronociceptive RVM ON cells. Our data indicate that the DMH participates in descending facilitation of cutaneous nociception in healthy controls, but it is not engaged in the regulation of cutaneous nociception in monoarthritic animals, while a minor role in tonic suppression of nociception in arthritis cannot be discarded.
-
Brain research bulletin · Sep 2013
Flattening plasma corticosterone levels increases the prevalence of serotonergic dorsal raphe neurons inhibitory responses to nicotine in adrenalectomised rats.
Major depression is characterized by a diminished activity of the brain serotonergic system as well as by the flattening of plasma cortisol levels. Nicotine improves mood in patients with major depression and in experimentally depressed animals by increasing brain serotonin (5-HT), noradrenaline and dopamine levels. The present study was directed to determine if flattening plasma glucocorticoid levels changes nicotine's stimulatory effects upon 5-HT DRN neurons. ⋯ Adx+CSR rats also presented an increased function of 5-HT1A autoreceptors, since, in these rats, serotonin (1-10μM) produced a higher increase in the potassium dependent inward rectifying current in comparison with sham-operated animals. Serotonin release inside DRN was mediated by α4β2 nicotinic acetylcholine receptors since the selective antagonist of these receptors dihydro-β-erytroidine hydrobromide (DHβE, 100nM) blocked the inhibitory effects of nicotine 5-HT DRN neurons. These data indicate that, in the experimental model of adrenalectomised rats implanted with corticosterone pellets, nicotine increases the function of 5-HT1A receptors of 5-HT DRN neurons.