Brain research bulletin
-
Nogo, also known as Reticulon-4, is a protein that is specific to the central nervous system (CNS), and has been identified as an inhibitor of neurite outgrowth. Nogo-A is the largest member of the Nogo family and is responsible for inhibition of CNS regeneration. The structural information and biological functions of Nogo family members are reviewed in this study. ⋯ Understanding the biological functions of Nogo family members may open up a new avenue for the development of therapeutic agents. The anatomical and biological plastic changes are reviewed in animal models of injuries in the adult CNS. The role of Nogo A in neuroregeneration, and the mechanisms underlying functional recovery after CNS injury, are also detailed in this review.
-
Brain research bulletin · Apr 2012
Variation of pain and vasomotor responses evoked by intramuscular infusion of hypertonic saline in human subjects: influence of gender and its potential neural mechanisms.
The aim of current study was to explore role of gender in pain and cutaneous vasomotor responses during the condition of intramuscular (i.m.) hypertonic (HT, 5.8%) saline induced muscle pain. In 20 healthy human subjects (10 females), 2-4.8ml of either HT or isotonic (IT, 0.9%) saline was infused into the left tibialis anterior muscle to elicit muscle pain, during which the intensity and distribution of pain together with skin vasomotor responses were investigated. Cutaneous blood flow was assessed using laser-Doppler flowmetry in 4 different skin areas: ipsilateral infusion area (5cm×5cm), ipsilateral referred pain area (5cm×10cm), contralateral area to the infusion site (5cm×5cm), and contralateral area to the referred pain site (5cm×10cm). ⋯ However, post-treatment with lidocaine significantly reduced the pain intensity and the increased skin blood flow only in men, but not women. The data demonstrate that gender-associated difference exists in HT saline intramuscularly induced local muscle pain and vasomotor responses. Neural mechanisms underlying gender-related differences in vasomotor responses is significantly different, suggesting that local pre-treatment, but not post-treatment, with anesthetic may provide superior analgesia to block sex-associated difference in pain and vasomotor responses.
-
Brain research bulletin · Mar 2012
Dexmedetomidine prevents remifentanil-induced postoperative hyperalgesia and decreases spinal tyrosine phosphorylation of N-methyl-d-aspartate receptor 2B subunit.
Numerous studies have demonstrated that prolonged opioid exposure can enhance pain sensitivity that presents as opioid-induced hyperalgesia (OIH). Activation of spinal α2-adrenergic receptor may play an important role in the development of OIH. Dexmedetomidine is an α2-adrenergic agonist that has been shown to synergize with opioids. ⋯ Correlated with the pain behavior changes, Western blotting experiments also revealed that dexmedetomidine could decrease NR2B subunit phosphorylation (Tyr1472 site) in the dorsal horn, which was upregulated after remifentanil infusion. These results suggest that dexmedetomidine can efficiently alleviate OIH and it may be an effective novel option for the treatment of OIH. Our data also provide evidence that dexmedetomidine's anti-hyperalgesic effect may depend on its ability to modulate spinal cord NMDAR activation via suppression of NR2B phosphorylation.
-
Brain research bulletin · Mar 2012
Probucol modulates oxidative stress and excitotoxicity in Huntington's disease models in vitro.
Huntington's disease (HD) is an autosomal dominant inherited neurodegenerative disease characterized by symptoms attributable to the death of striatal and cortical neurons. The molecular mechanisms mediating neuronal death in HD seem to be related to oxidative stress, excitotoxicity and misbalance in energetic metabolism. In this study we evaluated the potential relationship between energetic impairment, excitotoxicity and oxidative stress in rat striatal slices exposed to quinolinic acid (QA; as an excitotoxic model), 3-nitropropionic acid (3-NP; as an inhibitor of mitochondrial succinate dehydrogenase), as well as a combined model produced by the co-administration of these two toxins at subtoxic concentrations. ⋯ Our data suggest that the two studied toxic models (QA and 3-NP) or the combined model (QA plus 3-NP) can generate complex patterns of damage, which involve metabolic compromise, ROS formation, and oxidative stress. Moreover, a partial inhibition of SDH by subtoxic 3-NP and moderate excitotoxicty by subtoxic QA are potentiated when both agents are associated. The toxic action of QA plus 3-NP seems to be involved with Ca2+ metabolism and ROS formation, and can be prevented or attenuated by antioxidant/scavenger compounds and NMDAr antagonists.
-
Brain research bulletin · Feb 2012
Sodium channel Nav1.6 is up-regulated in the dorsal root ganglia in a mouse model of type 2 diabetes.
Neuropathic pain is one of the most common chronic complications of diabetes, of which the underlying mechanisms are unclear. Expression changes of voltage-gated sodium channels in dorsal root ganglia (DRG) are involved in the production of ectopic spontaneous activity. In the present study, we examined the changes of DRG Nav1.6 expression in a mouse model of type 2 diabetes (db/db mice). ⋯ Real-time PCR showed that in postnatal 1 month of db/db mice, mRNA level of Nav1.6 was increased by 1.72±0.22 fold, which was significantly higher than that of C57 and db/+ mice. Nav1.6 mRNA was increased thereafter and maintained at high levels throughout the observed period. Our results provide direct evidence that type 2 diabetes induces significant and persistent increase of Nav1.6 expression in the DRG, which may participate in the diabetic neuropathic pain.