Brain research bulletin
-
Brain research bulletin · Jan 2002
ReviewThe role of nicotinic acetylcholine receptors in the mechanisms of anesthesia.
Nicotinic acetylcholine receptors are members of the ligand-gated ion channel superfamily, that includes also gamma-amino-butiric-acid(A), glycine, and 5-hydroxytryptamine(3) receptors. Functional nicotinic acetylcholine receptors result from the association of five subunits each contributing to the pore lining. The major neuronal nicotinic acetylcholine receptors are heterologous pentamers of alpha4beta2 subunits (brain), or alpha3beta4 subunits (autonomic ganglia). ⋯ Usual clinical concentrations of curare cause competitive inhibition of muscle nicotinic acetylcholine receptors while higher concentrations may induce open channel blockade. Neuronal nAChRs like alpha4beta2 and alpha3beta4 are inhibited by atracurium, a curare derivative, but at low concentrations the alpha4beta2 receptor is activated. Inhibition of sympathetic transmission by clinically relevant concentrations of some anesthetic agents is probably one of the factors involved in arterial hypotension during anesthesia.
-
Brain research bulletin · Dec 2001
The effects of Zn2+ on long-term potentiation of C fiber-evoked potentials in the rat spinal dorsal horn.
Tetanic stimuli of peripheral C fibers produces long-term potentiation (LTP) in the spinal cord, which may contribute to sensitization of spinal pain-sensitive neurons. Zn2+ is widely distributed in the central nervous system and has blocked (LTP) in the hippocampus. The present study examined the effects of Zn2+ on the induction and maintenance of C fiber-evoked LTP in the deep dorsal horn of spinalized rats in vivo. ⋯ When Zn2+ was given 2 h after induction of LTP, no significant effect occurred. (2) Chelation of Zn2+ by disodium calcium ethylene diaminetelraacetate (CaEDTA) (500 microM) resulted in no effect on LTP. (3) Coadministration of Zn2+ (15 microM) and N-methyl-D-aspartic acid (NMDA) (5 microM) significantly attenuated C fiber-evoked potentials, which was prevented by the NMDA receptor antagonist AP-5 (100 microM). The present results showed that Zn2+ may contribute to the modulation of the formation, but not the maintenance, of spinal LTP. NMDA receptors may be involved in Zn2+-induced modulation.
-
Brain research bulletin · Jul 2001
SoRI 9409, a non-peptide opioid mu receptor agonist/delta receptor antagonist, fails to stimulate [35S]-GTP-gamma-S binding at cloned opioid receptors.
Recent work suggests that opioids which combine mu agonist and delta antagonist activity may be non-addicting antinociceptive agents. SoRI 9409 (5'-(4-Chlorophenyl)-17-(cyclopropylmethyl)-6,7-didehydro-3,14-dihydroxy-4,5alpha-epoxypyrido-[2',3':6,7]morphinan) is a naltrexone-derived non-peptide ligand which demonstrates partial mu and kappa agonist activity and antagonist activity at delta receptors. Chronic administration of SoRI 9409 to mice failed to produce tolerance to its antinociceptive effect and SoRI 9409 produced less withdrawal signs than naloxone in acute and chronic morphine dependence models. ⋯ Its profile of activity resembled that of naltrindole (NTI). Viewed collectively, the in vitro data reported here predict that SoRI 9409 should be a mu antagonist in vivo, which is not observed. Resolving these discrepant findings will require additional research.
-
Brain research bulletin · May 2001
Deprivation and denervation differentially affect zinc-containing circuitries in the barrel cortex of mice.
In the neocortex, a population of glutamatergic synapses contains chelatable zinc that is released upon depolarization. The present study compares the effect of chronic tactile deprivation and vibrissectomy performed at different postnatal ages on the synaptic zinc distribution in the mouse barrel cortex. We found that a chronic unilateral tactile deprivation resulted in an increase of synaptic zinc in deprived barrels. ⋯ However, no changes in the intensity of zinc staining were observed. Vibrissectomy performed after the critical period for barrel formation did not affect either the distribution or intensity of zinc staining. It appears that the integrity of vibrissa-barrel pathway is necessary to induce activity-dependent alterations in synaptic zinc.
-
Brain research bulletin · Apr 2001
Cholinergic, noradrenergic, and serotonergic inhibition of fast synaptic transmission in spinal lumbar dorsal horn of rat.
It is known that spinal nociceptive sensory transmission receives descending inhibitory and facilitatory modulation from supraspinal structures. Glutamate is the major fast excitatory transmitter between primary afferent fibers and spinal dorsal horn neurons. In whole-cell patch clamp recordings from dorsal horn neurons in spinal slices, we investigated synaptic mechanisms for inhibitory modulation at the lumbar level of the spinal cord. ⋯ The inhibitory effect of serotonin was likewise mediated by postsynaptic G-proteins. Our results suggest that activation of postsynaptic neurotransmitter receptors plays a critical role in inhibition of glutamate mediated sensory responses by acetylcholine, norepinephrine, and serotonin. Our results support the hypothesis that descending sensory modulation may be mediated by multiple neurotransmitter receptors in the spinal cord.