Psychopharmacology
-
Cannabinoids have recently been identified as potential neuronal modulators of pruritic response, representing a potential target in the treatment of itch associated with a variety of pathophysiologic conditions. While the selective CB(1) receptor antagonist rimonabant is an established pruritic agent in both animal and clinical testing, its receptor mechanism of action and anatomical loci remain unclear. ⋯ Rimonabant is a potent and fully effective pruritogen when administered spinally or systemically and requires CB(1) receptors to induce scratching, suggesting an important spinal CB(1) receptor component of action. The lack of responsiveness to H(1) antagonism or mast cell deficiency supports previous findings that cannabinoids modulate itch through neuronal mechanisms, and not by traditional hypersensitivity activation.
-
Discovery of an endocannabinoid signaling system launched the development of the blocker rimonabant, a cannabinoid CB1 receptor (CB(1)R) antagonist/inverse agonist. Due to untoward effects, this medication was withdrawn and efforts have been directed towards discovering chemicals with more benign profiles. ⋯ A neutral CB(1)R antagonist (AM4113) produced cueing effects similar to those of rimonabant and generalization likely was centrally mediated. The functional cueing effects of rimonabant are relatively short-acting, pharmacologically selective, and differentially blocked by cannabinergics.
-
Olfactory bulbectomy (OBX) in a laboratory rodent leads to numerous behavioral deficits and involves cognitive and motor changes that are used to model major depression, but may also be a valuable tool in the study of neurodegenerative disorders like Alzheimer's disease. ⋯ In the present study, simvastatin treatment enhanced cognition in intact rats, but had no effect in OBX rats. These results are in line with the idea that statins may attenuate (early) age-associated cognitive decline in humans.