The American journal of sports medicine
-
The purpose of this study was to examine the in vitro effects of three radiofrequency energy devices (two bipolar devices and one monopolar device) for the performance of thermal chondroplasty. Thirty-two fresh bovine femoral osteochondral sections (approximately 3 x 4 x 5 cm) from eight cows were divided into four groups (three treatment patterns and one sham-operated group with eight specimens per group). The three treatment patterns consisted of 1) radiofrequency energy delivered by a mechanical jig at 1 mm/sec in a contact mode (50 g of pressure), 2) radiofrequency energy delivered by a mechanical jig at 1 mm/sec in a noncontact mode (1 mm between probe tip and articular cartilage surface), and 3) radiofrequency energy smoothing of abraded cartilage during arthroscopic visualization. ⋯ The bipolar radiofrequency systems penetrated 78% to 92% deeper than the monopolar system. The bipolar systems penetrated to the level of the subchondral bone in all osteochondral sections during arthroscopically guided paintbrush pattern treatment. Radiofrequency energy should not be used for thermal chondroplasty until further work can establish consistent methods for limiting the depth of chondrocyte death while still achieving a smooth articular for thermal chondroplasty until further work can establish consistent methods for limiting the depth of chondrocyte death while still achieving a smooth articular surface.