The Journal of hand surgery
-
The efficiency of the flexor tendon system was examined in a human cadaver model. Pulleys were randomly sectioned, and the results were evaluated on the basis of the tendon excursion, force generated at the fingertip, and the work (force multiplied by distance) involved, as compared to the intact pulley system. When a single minor pulley (A1 or A5) was cut, there was no statistical difference in work efficiency or excursion efficiency from controls. ⋯ The intact three pulley systems of A2, A3, and A4 were near normal and statistically better than A2 and A4 together for work efficiency. Cutting one of the major pulleys (A2, A4) resulted in significant changes in efficiency, but what was unexpected was to find an 85% loss of both work and excursion efficiency for the loss of A4 but only an excursion difference of 94% for the loss of A2. Our findings demonstrated that in this model, with the influence of the skin removed, A4 absence produced the largest biomechanically measured efficiency changes and that a combination of A2, A3, and A4 was necessary to preserve both work and excursion efficiency.